Department of Electronics & Communication Engineering CO ATTAINMENT 2021-2022

Paper Code (Name)	COs	COURSE OUTCOMES(COs)	Attainm ent (%)
		3 RD SEMESTER	
	CO1	Differentiate the conduction techniques in semiconductor materials	75%
EC301 (Electronic	CO2	Analyze characteristics of semiconductor diodes, bipolar transistors, Mos- Transistors and solve problems.	75%
Devices)	CO3	Differentiate between different Opto-electronic devices	75%
	CO1	Convert various number system and apply logic gates, Boolean algebra and K-Map to design digital circuits.	75%
EC302 (Digital System Design)	CO2	Design the digital combinational circuits likes decoders, encoders, multiplexers and de-multiplexers, half adder, full adder and compare their performance to optimize production cost and also develop sequential digital circuits like flip-flop, register, counter to design memory device.	75%
	CO3	Illustrate the knowledge of ROM,RAM,PROM,PLD,FPGA,TTL,CMOS and ECL apply them to design VLSI system.	75%
EC303	CO1	Analyze different types of signals.	45%
(Signals & Systems)	CO2	Represent continuous and discrete systems in time and frequency domain using different transforms.	45%
	CO3	Investigate whether the system is stable.	45%
	CO4	Sampling and reconstruction of a signal.	45%
EC204	CO1	Apply all the electrical network theories and the concept of resonance to typical electric circuits with AC & DC sources to solve problems related to electronics & Communication Engineering	67%
EC304 Network Theory	CO2	Apply Laplace transform technique to analyze complex electrical circuits in s domain and solve for voltage & current values related to electronics & communication Engineering.	67%
	CO3	Apply the knowledge of any set of two-port parameters for circuit analysis, & measurement of different parameters and convert one set of two-port parameters to another.	67%
ES-CS301	CO1	Implementation of different data structures efficiently.	75%
Data Structure & Algorithm (ES)	CO2	Usage of well-organized data structures to handle large amount of data.	75%
	CO3	Usage of appropriate data structures for problem solving.	75%

The students will learn: The ideas of probability and random variables and various discrete and continuous probability distributions and their properties. CO2 The basic ideas of statistics including measures of central tendency, correlation and CO3 The statistical methods of studying data samples. CO1 Organize/Design the experiment related to Solid State Device Lab. Electronic Devices CO3 Conduct actual experiment related to Solid State Device Lab. CO4 Analyze data and draw conclusion related to Solid State Device Lab. CO5 Analyze with proper experimental data and graphs and communicate effectively related to Solid State Device Lab. CO6 Organize/Design the experiment related to Digital System Design Lab. CO7 CO8 CO9 Generate experimental Data related to Digital System Design Lab. CO8 CO9 Generate experimental Data related to Digital System Design Lab. CO9 CO9 CO9 CO9 CO9 CO9 CO9 CO9 CO9 CO	
CO2 The basic ideas of statistics including measures of central tendency, correlation and CO3 The statistical methods of studying data samples. CO1 Organize/Design the experiment related to Solid State Device Lab. 81 EC391 CO2 Generate experimental Data related to Solid State Device Lab. 81 Electronic Devices CO3 Conduct actual experiment related to Solid State Device Lab. 81 CO4 Analyze data and draw conclusion related to Solid State Device Lab. 81 CO5 Analyze with proper experimental data and graphs and communicate effectively related to Solid State Device Lab. 82 EC392 CO2 Generate experimental Data related to Digital System Design Lab. 83 CO4 Analyze data and draw conclusion related to Digital System Design Lab. 84 CO5 Generate experimental Data related to Digital System Design Lab. 85 CO6 Analyze data and draw conclusion related to Digital System Design Lab. CO7 Analyze with proper experimental data and graphs and communicate effectively related to Digital System Design Lab. CO8 Design and develop programs using data structure & algorithm concepts. CO9 Design and develop programs using data structure & algorithm concepts. CO1 Develop sign ple applications using linear and non-linear data structures & algorithms concepts and understand the access meaning and expensions and expen	
EC391 CO2 Generate experimental Data related to Solid State Device Lab. 81 CO3 Conduct actual experiment related to Solid State Device Lab. 81 CO4 Analyze data and draw conclusion related to Solid State Device Lab. 81 CO5 Analyze with proper experimental data and graphs and communicate effectively related to Solid State Device Lab. CO6 Generate experimental Data related to Digital System Design Lab. CO7 Generate experimental Data related to Digital System Design Lab. CO8 Generate experimental Data related to Digital System Design Lab. CO9 CO9 Conduct actual experiment related to Digital System Design Lab. CO9 Analyze data and draw conclusion related to Digital System Design Lab. CO9 Analyze data and draw conclusion related to Digital System Design Lab. CO9 Analyze with proper experimental data and graphs and communicate effectively related to Digital System Design Lab. CO9 Design and develop programs using data structure & algorithm concepts. CO9 Develop simple applications using linear and non-linear data STRUCTURE STRUCTURE STRUCTURE & algorithms concepts and understand the access meaburisms and other was and functionallines.	-
EC391 CO2 Generate experimental Data related to Solid State Device Lab. Electronic Devices Lab.) CO3 Conduct actual experiment related to Solid State Device Lab. EC04 Analyze data and draw conclusion related to Solid State Device Lab. EC05 Analyze with proper experimental data and graphs and communicate effectively related to Solid State Device Lab. CO5 Generate experimental Data related to Digital System Design Lab. EC392 Digital System Design Design CO6 CO6 Analyze data and draw conclusion related to Digital System Design Lab. CO7	-
Electronic Devices CO3 Conduct actual experiment related to Solid State Device Lab. CO4 Analyze data and draw conclusion related to Solid State Device Lab. CO5 Analyze with proper experimental data and graphs and communicate effectively related to Solid State Device Lab. CO6 CO7	
CO3 Conduct actual experiment related to Solid State Device Lab. CO4 Analyze data and draw conclusion related to Solid State Device Lab. CO5 Analyze with proper experimental data and graphs and communicate effectively related to Solid State Device Lab. CO6 Organize/Design the experiment related to Digital System Design Lab. CO7 Generate experimental Data related to Digital System Design Lab. CO8 CO9 Conduct actual experiment related to Digital System Design Lab. CO9 Analyze data and draw conclusion related to Digital System Design Lab. CO9 Analyze with proper experimental data and graphs and communicate effectively related to Digital System Design Lab. CO9 Analyze with proper experimental data and graphs and communicate effectively related to Digital System Design Lab. CO9 Design and develop programs using data structure & algorithm concepts. CO9 Develop simple applications using linear and non-linear data structures & algorithms concepts and understand the access mechanisms and other use and functional linear.	391
CO3 Conduct actual experiment related to Digital System Design Lab. CO4 Analyze with proper experiment related to Digital System Design Lab. CO5 Generate experimental Data related to Digital System Design Lab. CO6 CO6 CO7	
EC392 CO2 Generate experiment al Data related to Digital System Design Lab. Base CO3 Conduct actual experiment related to Digital System Design Lab. CO4 Analyze data and draw conclusion related to Digital System Design Lab. CO5 Analyze with proper experimental data and graphs and communicate effectively related to Digital System Design Lab. CO6 Design and develop programs using data structure & algorithm concepts. CO7 Develop simple applications using linear and non-linear data structure & algorithms concepts and understand the access prochasigns and other use and functionalities.	b.)
EC392 CO2 Generate experimental Data related to Digital System Design Lab. CO3 Conduct actual experiment related to Digital System Design Lab. CO4 Analyze data and draw conclusion related to Digital System Design Lab. CO5 Analyze with proper experimental data and graphs and communicate effectively related to Digital System Design Lab. CO6 Design and develop programs using data structure & algorithm concepts. CO7 Design and develop programs using data structure & algorithm concepts. CO8 Develop simple applications using linear and non-linear data structures & algorithms concepts and understand the access mechanisms and other use and functionalities.	
Digital System Design CO3 Conduct actual experiment related to Digital System Design Lab. 88 CO4 Analyze data and draw conclusion related to Digital System Design Lab. 88 CO5 Analyze with proper experimental data and graphs and communicate effectively related to Digital System Design Lab. 88 CO6 Design and develop programs using data structure & algorithm concepts. 81 ESCS391 Develop simple applications using linear and non-linear data 81 Structure & algorithms concepts and understand the access 81 CO2 Design and develop programs using linear and non-linear data 81 CO8 Senerate experimental Data related to Digital System Design Lab. 88 ESCS391 Develop simple applications using linear and non-linear data 81 Structure & algorithms concepts and understand the access 82 CO9 Develop simple applications using linear and non-linear data 81	
CO3 Conduct actual experiment related to Digital System Design Lab. CO4 Analyze data and draw conclusion related to Digital System Design Lab. CO5 Analyze with proper experimental data and graphs and communicate effectively related to Digital System Design Lab. CO1 Design and develop programs using data structure & algorithm concepts. ESCS391 Develop simple applications using linear and non-linear data Structure & algorithms concepts and understand the access machanisms and other use and functionalities.	392
CO5 Analyze with proper experimental data and graphs and communicate effectively related to Digital System Design Lab. CO1 Design and develop programs using data structure & algorithm concepts. ESCS391 Develop simple applications using linear and non-linear data structures & algorithms concepts and understand the access machanisms and other use and functionalities.	,
cos effectively related to Digital System Design Lab. CO1 Design and develop programs using data structure & algorithm concepts. ESCS391 Develop simple applications using linear and non-linear data Structure & algorithms concepts and understand the access machinisms and other use and functionalities.	
CO1 concepts. ESCS391 Develop simple applications using linear and non-linear data structure CO2 structures & algorithms concepts and understand the access machenisms and other use and functionalities	-
Data Structure CO2 Structures & algorithms concepts and understand the access machenisms and other use and functionalities	
	ta Structure
CO3 Implement searching and sorting concepts for problem solving.	
CO4 Implement the concepts of graph and hashing concepts for problem solving.	
4 TH SEMESTER	
CO1 Design system components for amplitude modulation techniques that meet the specified needs with appropriate consideration relevant to complex analog communication systems	
Communication Analyze system components and calculate the corresponding values for nonlinear communication systems that meet the specified needs with appropriate consideration relevant to complex analog communication systems.	J
CO3 Analyze a stereo and a multiplexed system as applied to audio, analog or 78	

		digital communication respectively.	
	CO4	Analyze noise parameters and compare signal to noise ratio for analog modulation techniques reaching substantiated conclusions on the performance of analog communication systems.	78%
EC402 Analog	CO1	Understand the characteristics of diodes and transistors and design and analyse various rectifier and amplifier circuit.	75%
Electronic Circuits	CO2	Understand the functioning of OP-AMP and design OP-AMP based circuits, Oscillators and multivibrators.	75%
EC403 Microprocessor	CO1	Students will be able to do assembly language programming using 8085/8086 and interfacing design of peripherals like I/O, A/D, D/A, Timer etc.	78%
& Microcontrollers	CO2	Students will be able to distinguish and analyze the properties of microcontroller	78%
	CO1	To analyze and identify the Complexity of a problem and compute the recurrence relation.	75%
ESCS401 Design and	CO2	To analyze the several algorithms design techniques on some certain problems using divide & conquer method, dynamic programming approach, backtracking, greedy method.	75%
Analysis of Algorithm	CO3	To understand lower bound theory, graph traversal algorithm, network flow, disjoint set manipulation different method.	75%
	CO4	To design the algorithm of string matching problem, matrix manipulation algorithm.	75%
	CO5	To understand amortize analysis, approximation algorithm, notion of NP-completeness.	75%
	CO1	To develop thorough understanding of the mathematical concepts and theories that underlie numerical methods. This includes topics such as interpolation, differentiation, integration, and linear algebra.	74%
BS M401 Numerical Methods	CO2	Students should be able to analyse a given engineering problem and choose the appropriate numerical method to solve it. This requires an understanding of the strengths and limitations of various numerical techniques.	74%
	CO3	Students should be able to write computer programs to implement numerical algorithms. This includes an understanding of programming languages such as MATLAB, Python, or C++.	74%
	CO4	Students should understand the concept of numerical error and the sources of error in numerical calculations. They should be able to perform error analysis and make appropriate adjustments to improve the accuracy of their numerical solutions.	75%
BS B401 Biology for After studying the course, the student will be able to: Describe how biological observations of 18th Century that lead to major			81%

		discoursies and Comment that also if action new action at what his low is all	
Engineer		discoveries and Convey that classification per se is not what biology is all about but highlight the underlying criteria, such as morphological, biochemical and ecological	
	CO2	Highlight the concepts of recessiveness and dominance during the passage of genetic material from parent to offspring Convey that all forms of life have the same building blocks and yet the manifestations are as diverse as one can imagine	81%
	CO3	Classify enzymes and distinguish between different mechanisms of enzyme action. Identify DNA as a genetic material in the molecular basis of information transfer.	81%
	CO4	Analyse biological processes at the reductionistic level Apply thermodynamic principles to biological systems.	81%
	CO5	Identify and classify microorganisms.	81%
	CO1	Organize/Design the experiment related to Analog Communication Lab.	81.25%
EC491 Analog	CO2	Generate experimental Data related to Analog Communication Lab.	81.30%
Communication Lab	CO3	Conduct actual experiment related to Analog Communication Lab.	82.22%
	CO4	Analyze data and draw conclusion related to Analog Communication Lab.	81.48%
	CO5	Analyze with proper experimental data and graphs and communicate effectively related to Analog Communication Lab.	81.85%
	CO1	Organize/Design the experiment related to Analog Electronic Circuit Lab.	83.14%
EC492 Analog	CO2	Generate experimental Data related to Analog Electronic Circuit Lab.	83.14%
Electronic Circuit	CO3	Conduct actual experiment related to Analog Electronic Circuit Lab.	83.14%
	CO4	Analyze data and draw conclusion related to Analog Electronic Circuit Lab.	83.14%
	CO5	Analyze with proper experimental data and graphs and communicate effectively related to Analog Electronic Circuit Lab.	83.14%
EC402	CO1	The knowledge of basic microcomputer system and the architecture as well as assembly language programming of 8085 Microprocessor to solve engineering problems related to design system based on these processors in ECE.	93.8%
EC493 Microprocessor & Microcontroller	CO2	The knowledge of architecture and assembly language programming of 8051 microcontroller and the architecture of PIC to solve engineering problems related to design system based on these processors in ECE	93.7%
Lab	CO3	The knowledge of architecture and assembly language programming of 8086 Microprocessor to solve engineering problems related to design system based on these processors in ECE.	93.5%
	CO4	The knowledge of memory and peripheral interfacing devices to solve engineering problems related to design of I/O and memory interfacing of Microprocessor and Microcontroller Lab based system in ECE.	93.7%

	005	Analyze with proper experimental data communicate effectively related to	02.00/
	CO5	Microprocessor and Microcontroller Lab.	93.8%
	CO1	Students would develop deep understanding of numerical algorithms, including interpolation, differentiation, integration, and linear algebra, and how these algorithms can be implemented in C.	61%
BS-M(CS)491 Numerical	CO2	Students would be able to write computer programs in C to implement numerical algorithms. This requires an understanding of the syntax and features of C programming language.	61%
Method Lab.	CO3	Students would develop an understanding of programming concepts such as data structures, control structures, functions, and file handling in C, and how these concepts can be used to implement numerical algorithms.	61%
	CO4	Students would be able to identify and fix errors in C programs, including runtime errors, syntax errors, and logical errors. They should also understand the importance of error handling in numerical computations.	61%
		5 TH SEMESTER	
	CO1	Understand the basic mathematical concepts related to electromagnetic vector fields.	70%
EC501 Electromagnetic Waves	CO2	Characterize uniform plane wave and calculate reflection and transmission of waves at media interface.	70%
	CO3	Understand characteristics and wave propagation on high frequency transmission lines, carryout impedance transformation on transmission line and use sections of transmission line sections for realizing circuit elements.	70%
	CO4	Analyze wave propagation on metallic waveguides in modal form.	70%
	CO5	Understand principle of radiation and radiation characteristics of an antenna.	70%
	CO1	learn how computers work and know basic principles of computer's Working procedure.	70
EC502 Computer	CO2	Analyze the performance of computers.	70
Architecture	CO3	Know how computers are designed and built.	70
	CO4	Understand issues affecting modern processors (caches, pipelines etc.)	70
EC503	CO1	Apply the fundamental knowledge of probability theory and random processes for the solution of complex engineering problems related to digital communication techniques.	64
Digital Communic ation &	CO2	Analyze signal and system parameters using the methods of vector algebra reaching substantiated conclusions on digital communication techniques.	64
Stochastic Process	CO3	Design solution for baseband transmission techniques as applicable to digital communication	64

	1		- 1
	CO4	Design solution for digital carrier modulation techniques as applicable to electronics and Communication Engineering	64
EC504	CO1	Appling sampling theorem students can able to construct/convert continuous time signal/analog into digital sequence and gain the knowledge from time to frequency domain conversion like DTFT,DFT.	68%
Digital Signal Processing	CO2	Student can able to design and implement different types of digital filters(both FIR and IIR) from analog prototype filter using the knowledge of filter transformation(Likely Impulse invariant and Bilinear transform) in different form such as direct form-I, form-II, cascade and parallel etc.	68%
	CO3	They can able to process digital signals and can also design Digital system/Digital signal Processor by setting proper Algorithm onto FPGA and writing Assembly level program.	68%
PEEC505A Program	CO1	Understand various aspects of nano-technology and the processes involved in making nano components and material and appropriate use in solving practical problems	68%
Elective1 Nano Electronics	CO2	Appropriate use of different nano-technology for life-long learning.	68%
	CO1	Understand the radiation pattern of dipole antenna	83%
EC591	CO2	Understand the radiation pattern of Folded dipole antenna.	83%
Electromagnetic Wave Lab	CO3	Understand the radiation pattern of 3 element yagi -uda antenna .	83%
	CO4	Analyze the beam width, gain and radiation pattern of a 3-element,5 element and 7 element yagi- uda antenna.	83%
	CO5	Evaluate the radiation characteristics of a Pyramidal horn antenna	83%
	CO1	Apply the fundamental knowledge of probability theory and random processes for the solution of complex engineering problems related to digital communication techniques.	93%
EC592 Digital	CO2	Analyze signal and system parameters using the methods of vector algebra reaching substantiated conclusions on digital communication techniques.	93%
Communication Lab	CO3	Design solution for baseband transmission techniques as applicable to digital communication	93%
	CO4	Design solution for digital carrier modulation techniques as applicable to electronics and Communication Engineering	93%
	CO1	Organize/Design the experiment related to Digital Signal Processing Lab.	94.8
EC593	CO2	Generate experimental Data related to Digital Signal Processing Lab.	94.8
Digital Signal Processing Lab.	CO3	Conduct actual experiment related to Digital Signal Processing Lab.	94.6
	CO4	Analyze data and draw conclusion related to Digital Signal Processing Lab.	94.9
	CO5	Analyze with proper experimental data and graphs and communicate effectively related to Digital Signal Processing Lab.	94.8

		6 TH SEMESTER	
EC601 Control System	CO1	Characterize a system and find its steady state behavior.	64%
Instrumentation	CO2	Investigate stability of a system using different test related to control system.	64%
EC602 Computer Network	CO1	Familarization with the fundamental knowledge of data communication and networks and apply this knowledge to investigate the error in the communication network and analyze the errors using different error correcting codes.	64%
	CO2	Analyze the internetworking devices and investigate different addressing and subnetting protocols to investigate proper process to process delivery.	64%
PEEC603D Information	CO1	Recognize the notion of information in the quantitative sense to measure the quantity of information for transmission of data and apply this basic knowledge to calculate channel capacity and probability distribution for real time transmission systems.	65%
Theory & Coding	CO2	Assess the fundamental coding theorem for encoding and decoding the information and develop the different techniques for construction of error correction codes .	65%
	CO3	Evaluate the rate and error probabilities in different coding techniques to implement the cost effective system.	65%
	CO1	differentiate between structures oriented programming and object oriented programming.	70%
OEEC604C Object Oriented	CO2	use object oriented programming language like C++ and associated libraries to develop object orientedprograms.	70%
Programming	CO3	understand and apply various object oriented features like inheritance, data abstraction, encapsulation andpolymorphism to solve various computing problems using C++ language.	70%
	CO4	apply concepts of operator-overloading, constructors and destructors	70%
	CO5	apply exception handling and use built-in classes from STL.	70%
EC401	CO1	Characterize a system and investigate stability of the system in time and frequency domain with different method related to Control and Instrumentation Lab.	90%
EC691 Control System & Instrumentation Lab.	CO2	Design various controllers related to Control and Instrumentation Lab.	90%
	CO3	Conduct experimental set up with CRO ,Instrumentation Amplifier knowing their functional details related to Control and Instrumentation Lab.	90%
	CO4	Conduct actual experiment related to Control System and Instrumentation Lab.	90%
	CO5	Analyze with proper experimental data and graphs and communicate effectively related to Control System and Instrumentation Lab.	90%
EC692 Computer	CO1	Understand the basic concept related to NIC installation and configuration. Apply the knowledge of IPC message queue.	95%
Computer Network	CO2	Remembering and understanding the networking cables, switches, hubs and	95%

Lab		connectors.			
Lab	GOA	Understand multicast and broadcast socket and analyze TCP/UDP socket	0.50/		
	CO3	·	95%		
	GO 4	programming.	0.50/		
	CO4	Applying the knowledge of socket programming, analyze prototype multithreaded server.	95%		
	~~-		0.7		
	CO5	Understand the knowledge of data link layer flow control mechanism and apply this knowledge for the error control.	95%		
EC(01	CO1				
EC681	COI	Formulation of a problem statement either from rigorous literature survey or from the requirements raised need to be analysed.			
Electronic Design	CO2	Design, implement and test the photo type/algorithm in order to solve the	90%		
	002	problem statement.	, , , ,		
Mini Project Lab		Write comprehensive report on Mini Project work.			
	CO3				
	•	7 TH SEMESTER			
	CO1	Visualize the architecture of satellite systems as a means of high speed,	5 200		
EC701B		high range communication system.	73%		
Satellite	000	State various aspects related to satellite systems such as orbital	73%		
Communication	CO2	equations, sub-systems in a satellite, link budget, modulation and			
		multiple access schemes.			
	CO3	Solve numerical problems related to orbital motion and design of link	73%		
	CO3	budget for the given parameters and conditions.			
EC702C	CO1	Analyze and classify neural networks and its implementation algorithms.	71%		
Neural Network	CO2	Apply suitable algorithms on different cases.	71%		
and	CO2	Appry suitable algorithms on different cases.	/ 1 /0		
Fuzzy Logic	CO3	Apply fuzzy logic and neural networks.	71%		
Control					
	CO4	Analyze the applications of Neural Network and Fuzzy logic in image	71%		
		processing.			
EC703A		Understand the internal structure, purpose and application of Embedded			
20,0011	CO1	system.	74%		
Embeded System					
	CO2	Apply the concept of Embedded firmware in design of Embedded System.	- 404		
	002		74%		
		design good web pages using different tags, tables, forms, frames and			
	CO1	style sheets supported by HTML and implement, compile, test and run			
		Java programs, comprising more than one class, to address a particular	73%		
OEEC704A		software problem.			
OEEC/04A	CO2	demonstrate the ability to employ various types of selection	73%		
Web Technology		statements and iteration statements in a Java program.			
	CO3	be able to leverage the object-oriented features of Java language using	73%		
		abstract class and interface.			
	CO4	be able to handle errors in the program using exception handling	73%		
		techniques of Java.			
	CO5	design applets as per the requirements with event handling facility.	73%		
F.C=0.1		Apply knowledge(fundamental & specialized) to understand the real life	90		
EC781	CO1	problem in the related field.	70		
Industrial		problem in the related field.			
Training	CO2		73		
& Project	332	Understand the design and implementation aspects of engineering	, 5		

OEEC704A		system/components.	
	CO3	Work individually and also in a group.	73
	CO4	Communicate the details of training through Training Report, Presentation and Viva-Voce.	73
	CO5	Understand implication of engineering solutions in social and environmental perspective.	73
	CO1	Formulate the problem.	92
	CO2	Develop or design a solution of the problem.	92
	CO3	Build up project prototype or model in hardware or software.	92
	CO4	Analyze the experimental/collected data.	92
	CO5	Do investigation/research in the problem area.	92
T-C=04	CO6	Apply fundamental and specialize knowledge in the area of the problem.	92
EC782 Project Stage 1	CO7	Self learn new methods, tools and techniques.	92
	CO8	Apply modern tools and techniques.	92
	CO9	Work individually and also in team.	92
	CO10	Communicate the details and findings of the project through project report, presentation, Viva-Voce and paper presentation, if any.	92
	CO11	Apply project management and economic knowledge	92
	CO12	Identify implications of the project in society and environment.	92
		8 TH SEMESTER	
PEEC 801B Fibre Optics	CO1	Learn the properties of light in different medium and utilize the knowledge in different types of fibres for optical fibre communication system, and also the corresponding losses of each kinds of fibres.	83
Communication	CO2	Learn the working of all types of optical source and detectors for signal modulation and demodulation respectively.	83
PEEC802C	CO1	Understand the practical situations where mixed signal analysis is required.	74
	CO2	Analyze and handle the inter-conversions between signals.	74
	CO3	Design systems involving mixed signals.	74
OEEC804C	CO1	Understand the modern view of AI as the study of agents that receive precepts' from the environment and perform actions.	75
	CO2	Demonstrate awareness of the major challenges facing AI and the complex of typical problems within the field.	75
			l

	•		
	СОЗ	Exhibit strong familiarity with a number of important AI techniques, including in particular search, knowledge representation, planning and constraint management.	75
	CO4	Asses critically the techniques presented and to apply them to real world problems.	75
	CO1	Formulate the problem.	95
	CO2	Develop or design a solution of the problem.	95
	CO3	Build up project prototype or model in hardware or software.	95
	CO4	Analyze the experimental/collected data.	95
	CO5	Do investigation/research in the problem area.	95
EC881	CO6	Apply fundamental and specialize knowledge in the area of the problem.	95
Project II	CO7	Self learn new methods, tools and techniques.	95
	CO8	Apply modern tools and techniques.	95
	CO9	Work individually and also in team.	95
	CO10	Communicate the details and findings of the project through project report, presentation, Viva-Voce and paper presentation, if any.	95
	CO11	Apply project management and economic knowledge	95
	CO12	Identify implications of the project in society and environment.	95
	CO1	Demonstrate the capability to formulate the problem.	95
	CO2	Demonstrate the capability to develop or design a solution of the problem.	95
	CO3	Demonstrate the capability to build up project prototype or model in hardware or software.	95
	CO4	Demonstrate the capability to analyze the experimental/collected data.	95
EC882	CO5	Show the capability to demonstrate the research based knowledge	95
Grand Viva	CO6	Demonstrate the capability to apply fundamental and specialize knowledge in the area of the problem.	95
	CO7	Demonstrate the capability for self learning new methods, tools and techniques.	95
	CO8	Demonstrate the capability to apply modern tools and techniques.	95
	CO9	Demonstrate the capability to work individually and also in team.	95
	CO10	Demonstrate the capability to communicate in details and present a topic related to Electronics & Communication Engineering.	95

CALCUTTA INSTITUTE OF ENGINEERING AND MANAGEMENT DEPARTMENT OF INFORMATION TECHNOLOGY CO ATTAINMENT REPORT 2021-2022

	FIRST SEMESTER				
PAPER CODE (Name)	CO No.	Course Outcomes	Attained ()		
	CO1	Apply the knowledge of simple harmonic motion (ideal and real cases) and basic concepts of Mechanics for the solution of complex problems.	81		
	CO2	Utilize the knowledge of vector calculus and different coordinate system for the solution of complex problems.	72		
BS PH-101 (Physics-1)	CO3	Apply the knowledge of physical optics (interference, diffraction, polarization) and LASER to solve different complex problems	75		
	CO4	Apply the knowledge of dielectric and magnetic properties of materials to interpret different complex systems.	83		
	CO5	Utilize the knowledge of Quantum Physics to analyze a complex engineering problem.	69		
	CO6	Apply the knowledge statistical mechanics to solve complex problems.	79		
BS-M(101)	CO1	To understand the concept and techniques of differential and integral calculus.	75		
$\begin{array}{c} \textbf{(Mathematics} \\ \textbf{I(A))} \end{array}$	CO2	To understand the domain of application of MVT,to engineers problem.	90		
	CO3	To learn the concept of eigen values, eigen vectors, diagonalisation	72		
	CO 1	To understand and analyze basic electric and magnetic circuits.	70		
ES-EE101	CO 2	To study the working principles of electrical machines and power converters.	75		
(Basic Electrical Engineering)	CO 3	To introduce the components of low voltage electrical installations.	70		
BS PH-191 (Physics-I Laboratory)	CO1	Organize/design the experiment related to various systems and interpret the physical properties of material.	72		
• /	CO2	Generate experimental Data related to electrical and magnetic properties.	80		

	CO3	Conduct actual experiment related to optical phenomena.	78
	CO4	Analyze data and draw conclusion related to quantum physics.	85
	CO5	Analyze with proper experimental data and graphs and communicate effectively.	75
	C0 1	Gather knowledge about the safety precautions and the do's-don'ts while dealing with electrical equipments.	75
ES-EE 191	CO 2	Study about the different electrical instruments and devices through their input-output relationship.	65
(Basic Electrical Engineering Laboratory)	CO 3	Organize different electrical instruments like ammeter, voltmeter, wattmeter and different electrical devices like transformer, rheostat, etc. to observe the output through incandescent lamps.	70
	CO1	Utilize the concept of fitting shop and make typical jobs.	70
ES ME 192 (Workshop /Manufacturing Practices)	CO2	Learn the basics of carpentry shop and utilize the concept to make typical jobs.	70
	CO3	Develop the concept of various machining processes and make use of Lathe, Shaping and Milling machine to construct typical jobs.	65
	CO4	Develop the concept of metal joining process and utilize the concept of welding to join to metal plates.	70

	THIRD SEMESTER				
PAPER CODE (Name)	CO No.	Course Outcomes	Attained(%)		
ESC301	CO1	Convert various number system and apply logic gates, Boolean algebra and K-Map to design digital circuits.	60		
(Analog & Digital Electronics)	CO2	Design the digital combinational circuits likes decoders, encoders, multiplexers amd demultiplexers, half adder, full adder and compare their performance to optimize production cost and also develop sequential digital circuits like flipflop, register, counter to design memory device.	62		
	CO3	Design and analyse various amplifier circuit, multivibrators, ROM, RAM, FPGA,TTL,CMOS and ECL	55		

	CO1	Differentiate how the choices of data structure & algorithm methods impact the performance of program	79
PCC-CS301 (Data Structure &	CO2	Solve problems based upon different data structure & also write programs	83
Algorithm)	CO3	Identify appropriate data structure & algorithmic methods in solving problem	80
	CO4	Discuss the computational efficiency of the principal algorithms for sorting, searching, and hashing.	82
	CO5	Compare and contrast the benefits of dynamic and static data structures implementations	71
	CO1	Analyze the relevance of classical and modern problems of computer design and construct machine code instructions.	70
PCC CS-302 (Computer Organization)	CO2	Design logical expressions and corresponding integrated logic circuits for a variety of problems including the basic components of a CPU such as adders, multiplexers, ALU using fixed-point and floating-point addition, subtraction, multiplication & division algorithm.	75
Organization)	CO3	Analyze hierarchical memory system including cache memories and virtual memory and Calculate their Cost, Speed and Capacity.	70
	CO4	Apply the knowledge of various micro- programmed instructions using the concept of pipelining for designing Control Unit and accessing I/O operation.	65
BSC-301 (Mathematics –	CO1	Express a logic sentence in terms of predicates, quantifiers, and logical connectives	70
III(Differential Calculus))	CO2	Apply the rules of interference and proof by contradiction, mathematical induction.	72
	CO3	Use tree and graph algorithm to solve the problems.	75
	CO4	Apply Boolean function ,and simplify expression	70
	CO5	To apply Boolean algebra to solve engineering problems	74
		Student will able to englyze the seemenic	
HSMC 301 (Economics for Engineers(Humani ties -II))	CO1	Student will able to analyze the economic decisions making, engineering costs & estimation and classification of costs by applying the knowledge of estimating models. Student will develop an understanding of cash flow, rate of return analysis in different socio-environmental situations.	58

	CO2	Analysis of inflation and price change will be done to the students for their proper understanding of the price indexes in economic analysis. Effect of inflation & deflation is analyzed to them to remember and if required to apply in real-life scenarios.	59
	CO3	Illustration of types of property, depreciation and expenses and its impact on business, for better understanding of the business environment and apply the knowledge of it.	61
		Organize/design the experiment related to analog	
	CO1	electronic circuit lab.	70
ESC391 (Analog & Digital Electronics)	CO2	Design the digital combinational circuits likes decoders, encoders, multiplexers amd demultiplexers, half adder, full adder and compare their performance to optimize production cost.	65
	CO3	Develop sequential digital circuits like Flip-Flop, Registers, Counters to design memory devices.	70
PCC-CS391	CO1	Apply the knowledge of linear data structure to implement Linked list, Stack, Queue, Array.	85
(Data Structure &	CO2	Apply the knowledge of nonlinear data structure to implement different types of tree.	80
Algorithms)	CO3	Implement different types of searching and sorting techniques in data structure.	82
	CO1	Analyze the behaviour of logic gates	80
PCC CS-392	CO2	Design combinational circuits for basic components of computer system and applications.	80
(Computer	CO3	Design arithmetic circuit for computer system.	80
Organisation)	CO4	Design Arithmetic logic units and different types of memory blocks.	80
PCC-CS393 (IT Workshop (Sci Lab/ MATLAB/	CO1	To master an understanding of scripting & the contributions of scripting languages	83
	CO2	Design real life problems and think creatively about solutions	85
Python/ R))	CO3	Apply a solution in a program using Python.	82
-	CO4	To be exposed to advanced applications of mathematics, engineering and natural sciences to program real life problems.	74

		FIFTH SEMESTER 2022	
	CO1	Understand basic SW engineering methods and practices, and their appropriate application.	85
	CO2	Understand u of software process models such as the waterfall and evolutionary models.	80
ESC-501 (Software Engineering)	CO3	Students will be able perform various life cycle activities like Analysis, Design, Implementation, Testing and Maintenance.	90
	CO4	Students will be able to know various processes used in all the phases of the product.	70
	CO5	Students can apply the knowledge, techniques, and skills in the development of a software product.	65
	CO1	Understand given grammar specification develop the lexical analyser	90
PCC-CS501	CO2	Design a given parser specification design top- down and bottom-up parsers	85
(Compiler Design)	CO3	Develop syntax directed translation schemes	80
	CO4	Develop algorithms to generate code for a target machine	75
	G0.1		
	CO1	Analyse processes and threads. Develop algorithms for process scheduling for a given specification of CPU utilization, Throughput, Turnaround Time, Waiting Time, Response time.	70
PCC-CS502 (Operating Systems)	CO3	Formulate a given specification of memory organization develop the techniques for optimally allocating memory to processes by increasing memory utilization and for improving the access time. Design and implement file management system.	65
	CO4	Categorize a given I/O devices and OS (specify) develop the I/O management functions in OS as part of a uniform device abstraction by performing operations for synchronization between CPU and I/O controllers.	60
PCC-CS503 (Object Oriented Programming)	CO1	Understand Abstract Data Types and their implementations using abstraction functions to document them.	70

	CO2	Apply the features of object-oriented design to implement encapsulation, polymorphism, inheritance, and composition of systems based or object identity.	n 80
	CO3	Name and apply some common object-oriented design patterns and give examples of their use.	65
	CO4	Design applications with an event-driven graphical user interface.	80
	CO1	Student will able to analyze the organisation structure, organizational culture and climate by applying the knowledge of factors affecting then	59
HSMC 501 (Introduction to Industrial Management	CO2	Analysis of determination of critical path on network will be done to the students for their proper understanding of determination of floats, material management, storekeeping- functions.	61
(Humanities – III))	CO3	Illustration of production planning and control, value analysis and its impact on business, for better understanding of the recent trends in IM and apply the knowledge of it.	62
		Apply the good programming skills to	
	CO1	formulate the solutions for computational problems.	60
	CO2	Design and develop solutions for informed and uninformed search problems in AI.	70
PEC-IT501B (Artificial	CO3	Demonstrate and enrich knowledge to select and apply AI tools to synthesize information and develop models within constraints of application area.	75
Intelligence)	CO4	Develop a minor project in multidisciplinary areas to demonstrate team work through reports and presentation.	70
	CO5	To design and develop an Expert System that operates in a realistic problem domain and communicate effectively in a team or individual and prepare reports.	60
	CO1	Demonstrate concepts of parallelism in	70
PEC-IT501C (Advanced	CO1	hardware/software. Discuss memory organization and mapping	70
Computer	CO2	techniques.	85
Architecture)	CO3	Describe architectural features of advanced processors.	75

	CO4	Interpret performance of different pipelined processors.	70
	CO5	Development of software to solve computationally intensive problems	65
MC-CS501 (Constitution of India)	CO1	To be able to identify the fundamental rights and duties, Directive Principles of State Policy in the Constitution of India by assessing the functions of various governmental administrations (Centre & State) and the Election Commission	72
	CO1	To understand the software engineering methodologies involved in the phases for project development.	85
ESC-591 (Software	CO2	To gain knowledge about open-source tools used for implementing software engineering methods.	90
Engineering)	CO3	To exercise developing product-startups implementing software engineering methods.	60
	CO4	Learn simple optimization techniques.	75
200 00503	CO1	Design and solve complex UNIX programs.	60
PCC-CS592 (Operating	CO2	Apply the knowledge of process and threads.	70
Systems)	СОЗ	Design and formulate inter process communication through programming.	65
PCC-CS593	CO1	Implement features of object-oriented design such as encapsulation, polymorphism, inheritance, abstraction.	93
(Object Oriented Programming)	CO2	Implementing multithreading concept in object oriented programming.	92
- 1 · 5 · · · · · · · · · · · · · · · · ·	СОЗ	Design applications with an event-driven graphical user interface.	95

SEVENTH SEMESTER 2022			
PEC-IT701C (Cloud Computing)	CO1	Explain the core concepts of the cloud computing paradigm, Cloud classification, Characteristics of Cloud Computing, different cloud models	85
	CO2	Discuss concepts of Abstraction and Virtualization technologies, Load Balancing, Hypervisors, compare different service models	75

	CO3	Lifecycle management of cloud services, Concepts of Cloud Security	65
	CO4	Discuss basic concept of Service Oriented Architecture, Applications in the Cloud, Cloud-based Storage	70
PEC-IT702A (Multimedia Technology)	CO1	Apply the knowledge of the diverse functions of Multimedia systems and its related hardware and software for the solution of problem related to Information Technology.	77
	CO2	Apply the knowledge of text, audio, image and video file formats for enhancement of the text, audio, image and video with using text, audio, image and video processing tools for the solution of a complex problem related to text, audio, image and video in the field of Information Technology.	76.
	CO3	Able to use various types of multimedia data storage devices for storage & retrieval of multimedia data.	73
	CO4	Design different types of multimedia applications like video-on-demand, video conferencing, digital libraries and other industrial applications.	72
OEC-IT701C (Soft Skill & Interpersonal Communication)	CO1	Students will be able to define the significance of soft skills by recalling relevant terminology and concepts from the syllabus, as assessed by a multiple-choice examination.	83
	CO2	Students will be able to evaluate their own beliefs, values, and attitudes in order to set goals and engage in self-discovery activities, as demonstrated by a written reflection essay.	81
	CO3	Students will be able to apply strategies for developing positive thinking, driving out negativity, and enhancing motivation levels in order to achieve personal and professional goals, as demonstrated through a group project and presentation.	74
	CO4	Students will be able to create and communicate effective messages and interpersonal relationships in a corporate context, as demonstrated by a formal report and presentation on a business scenario.	68

HSMC 701 (Project Management and Entrepreneurship)	CO1	Student will able to analyze the concept of innovation and entrepreneurship, contributions of entrepreneurs to the society, risk-opportunities perspective by applying the knowledge of factors affecting them.	58
	CO2	Analysis of project management, issues and problems in project management, project life cycle - initiation / conceptualization phase, determination of project feasibility studies will be done to the students for their proper understanding of social cost benefit analysis.	59
	CO3	Identification and illustration of the critical path and its significance, types of floats and slacks and its impact on business, for better understanding of the recent trends and apply the knowledge of it.	60
PROJ-IT 781 (Project - II)	CO1	To survey the literature; Identify and classify the requirements for the solution of complex engineering problems.	77
	CO2	To define the requirements of the project by proper analysis and interpretation of data and processes supported by standard documentation.	78
	CO3	To analyze the processes by mapping requirements in to Use case diagram(s)/ Data Flow Diagram(s)/ Algorithm(s)/ User-Interface design/ Entity Relationship Diagram(s) etc.	80
	CO4	To design behaviour of the application with modular programming and program flowchart/ class diagrams and sequence diagrams, etc.,following standard guidelines.	81
	CO5	To estimate project metrics like size, effort and cost, reliability and quality, etc and plan project development schedule using PART and GNATT charts.	82
	CO6	To justify the project work with technical documentation, presentation, and discussions as a group to share knowledge.	82
		SECOND SEMESTER	
PAPER CODE (Name)	CO No.	Course Outcomes	Attained (%)

	CO1	To be able to use the correct vocabulary in order to express oneself in English properly	62
	CO6	Apply the programming concepts for manipulating strings in C and file handling.	60
	CO5	Use pointers for direct memory access and manipulation in C; and how to change the memory address contained within a pointer;	70
	CO4	Analyze how to use arguments and return values and variables from a function.	65
FOR PROBLEM SOLVING)	CO3	Construct arrays using the concept of C programming.	70
ES-CS201 (PROGRAMMING	CO2	Apply logical operators and loops in programming.	60
	CO1	Design Algorithm, flow chart and program in C.	70
	CO4	Able to communicate their findings and results through written reports, and visual display	85
	CO3	Use statistical software and tools to analyze the data.	70
()	CO2	Apply probability theory and statistical interference to solve engineering problems.	75
BS-M201 (Mathematics-IIA)	CO1	To understand the concept of basic probability, including sample spaces, events, probability distribution, and conditional probability.	90
		chemical and biochemical reacting systems used in various engineering problems.	
	CO5	Apply the knowledge of structure, stability and reactivity of organic molecular species in order to gain a clear insight into the mechanism of	82
	CO4	Rationalise periodic properties (ionization potential, electro negativity, oxidation states) for various engineering applications.	81
(CHEMISTRY-I)	CO3	Distinguish the ranges of the electromagnetic spectrum used for exciting different molecular energy levels in various spectroscopic techniques.	78
BS CH-201	CO2	Rationalise bulk properties and processes using thermodynamic consideration for various engineering applications.	72
	CO1	Analyse microscopic chemistry in terms of atomic and molecular orbitals and intermolecular forces to solve different engineering problems.	69

	CO3	To be able to describe , discuss , and interpret reading input in English	75
	CO4	To be able to demonstrate that one can express oneself in English through writing	64
	CO1	Organize/Design the experiment related to Chemical Science as applicable in various Engineering problems.	72
	CO2	Generate experimental Data related to Chemical Science as applicable in complex problems.	78
BS CH-291 (CHEMISTRY-I)	CO3	Conduct actual experiment related to Chemical Science as applicable in different engineering application.	83
	CO4	Analyze data and draw conclusion related to Chemical Science as applicable in various engineering problems.	76
	CO5	Analyze with proper experimental data and graphs and communicate effectively related to Chemical Science as applicable in different engineering fields.	84
	CO1	To formulate the algorithms for simple problems	90
ES-CS291 (PROGRAMMING	CO2	To translate given algorithms to a working and correct program	90
FOR PROBLEM SOLVING)	CO3	To be able to correct syntax errors as reported by the compilers	80
-	CO4	To be able to identify and correct logical errors encountered at run time	85
	CO5	To be able to write iterative as well as recursive programs	90
	CO6	To be able to represent data in arrays, strings and structures and manipulate them through a program	80
	CO7	To be able to declare pointers of different types and use them in defining self-referential structures.	75
	CO8	To be able to create, read and write to and from simple text files	80
ES-ME291	CO1	Develop basic knowledge of engineering drawing including lettering, dimensioning and scaling system.	75
(Engineering Graphics & Design)	CO2	Develop basic knowledge on geometrical constructions and curves and apply the knowledge to solve real life problems.	70
	CO3	Learn the basic concept of orthographic and isometric projections related to design of engineering.	65

	CO4	Comprehend the basic knowledge of development of different types of surfaces and analyse their real-life applications.	65
	CO1	To be able to describe , discuss , and interpret the listening input in English	55
HM-HU291 (LANGUAGE	CO2	To be able to demonstrate that one can express oneself in English through speaking	54
LABORATORY)	CO3	To be able to describe, discuss, and interpret reading input in English	77
	CO4	To be able to demonstrate that one can express oneself in English through writing	67
		FOURTH SEMESTER	
PAPER CODE (Name)	CO No.	Course Outcomes	Attained (%)
	CO1	To understand the basic concept of set, relation, mapping	
			75
DGG GG404	CO2	To understand the POSET,Lattice	00
PCC-CS401	CO3	To understand the basic concept of number theory.	80
(DISCRETE MATHEMATICS)	COS	To understand the basic concept of number theory.	75
WATHEWATICS)	CO4	To understand graphs,cycle,trail,path	13
		To understand graphs, cycro, transpatir	80
	CO5	To apply the graph colouring, chromatic number to solve	;
		engineering problems.	75
PGG GG 404	CO1	To learn the basics of stored program concepts.	75
PCC-CS 402	CO2	To learn the principles of pipelining	85
(COMPUTER ARCHITECTURE)	CO3	To learn mechanism of data storage To distinguish between the concepts of serial, parallel,	80
ARCHITECTURE)	CO4	pipeline architecture	70
		pipenne meintecture	
	CO1	Familiarize with formal notation for strings, languages and machines and Design finite automata to accept a se of strings of a language.	
PCC-CS403 FORMAL LANGUAGE AND	CO2	Design hierarchy of formal languages, grammars and machines and Determine whether the given language is regular or not	65
AUTOMATA THEORY	CO3	Design context free grammars to generate strings of context free language and Determine equivalence of languages accepted by Push Down Automata and languages generated by context free grammars	75
	CO4	Distinguish between computability and non- computability and Decidability and undecidability	65
			•
	CO1	For a given algorithms analyse worst-case running time of algorithms based on asymptotic analysis and justify the correctness of algorithms.	
DCC CS404	CO2	Describe the greedy paradigm and explain when an algorithmic design situation calls for it. For a given	75
PCC-CS404 DESIGN &	CO3	problem develop the greedy algorithms. Describe the divide-and-conquer paradigm and explain	70
22010114		20001100 the divide-and-conquer paradigm and explain	70

ANALYSIS		wher	n an algorithmic design situation calls for it.	
ALGORITHM,			ize divide-and-conquer algorithms. Derive an	d
ALGORITIM,		Synthes	solve recurrence relation.	u
	CO4	Descr	ibe the dynamic-programming paradigm and	80
	CO4		when an algorithmic design situation calls for	
			given problems of dynamic-programming.	
	CO5		op the dynamic programming algorithms, and	85
	000		e it to determine its computational complexity	
	CO6		ven model engineering problem model it usin	
		graph and	d write the corresponding algorithm to solve t	he
			problems.	
	CO7		n the ways to analyse randomized algorithms	70
			pected running time, probability of error).	
	CO8		what an approximation algorithm is. Comput	
		the appro	oximation factor of an approximation algorith	m
			(PTAS and FPTAS).	
	~~:			
	CO1		how biological observations of 18th	
			ead to major discoveries and understand	020/
			lassification of organisms is based on	82%
		_	ogical, biochemical or ecological	
	CO2	parameter	the concepts of recessiveness and	
	CO2		the concepts of recessiveness and the during the passage of genetic material	81%
			ent to offering.	01/0
BSC 401	CO3		hat all forms of life have the same building	
(BIOLOGY)	003	1	d yet the manifestations are diverse.	78%
(======)	CO4		enzymes and distinguish between different	
			ms of enzyme action and identify DNA as	020/
			material in the molecular basis of	83%
			on transfer.	
	CO5	Analyse b	piological processes at the reductionistic	
			apply thermodynamic principals to the	75%
			l systems.	
	CO6	Identify a	and classify microorganisms.	79%
3.50 404	CC)1	To apply the knowledge of air	80
MC 401			pollution in order to develop	
(ENVIRONMENTAL			improved technologies to reduce the	
SCIENCES)			adverse effect of pollution on human health and environment.	
	CC)2	To apply the knowledge of water	82
	CC)	pollution in order to develop	62
			improved technologies for controlling	
			water pollution and provide safe and	
			clean drinking water to the society.	
	CC)3	To apply the knowledge of solid waste	84
			management in order to	
			develop technologies for reducing,	
			develop technologies for reducing, reusing and recycling the waste for the	
			reusing and recycling the waste for the benefit of the society.	
	CC	04	reusing and recycling the waste for the	80

	CO3		the knowledge of query optimization arms to optimize the execution time of		70
MANAGEMENT SYSTEMS)	CO2		the knowledge of entity relationship ls to design the database for a given requirement specification		75
PCC-CS601 (DATABASE	CO1	S(Co	QL queries for Open source and ommercial DBMS like MYSQL, ORACLE, and DB2		80
	CO1	lang	ply the knowledge of pure query uage to write a query in relational , relational calculus and construct the		00
PAPER CODE (Name)	CO No.		Course Outcomes	At	tained (%)
DADED CORE		SIXT	'H SEMESTER		
	CO5		Implement Graph Traversal Algorit with different examples	hm	60
	CO4		Demonstrate Greedy programmin method with different examples		75
	CO3		Execute Backtracking programmir method with different examples	ng	70
(DESIGN & ANALYSIS ALGORITHM)	CO2		Demonstrate Brunch and Bound programming method with differe example		70
PCC-CS494	CO1		Implement Divide and Conquer programming method with differe examples	nt	85
PCC-CS 492 (COMPUTER ARCHITECTURE)	CO2		Analyze the operational behaviour a applications of various gates, sequer and combinational circuits.		85
	CO1		Practical experience on Xlinx	<u> </u>	95
	CO6		involvement and create social awareness about the important national and international legislations and protocols concerning the protection conservation of environment.		07
	CO5		To identify and solve problems related to noise pollution and create awares among people about its harmful effeand control measures. To foster greater community	ness	88
			complex interrelationships between biotic and abiotic components in different types of eco systems in or to ensure sustainable development a growth.	der and	

				a query.		
			Ar	oply the knowledge of reducing anomalies		
	C	CO4	1-1	during database design.		75
	C	CO5	ir	Understand the transaction atomicity, ensistency, isolation, durability for a given transaction-processing system and explement the isolation property based on concurrency control and serializability of scheduling.		70
	C	CO6	Uı	nderstand different processes to secure the database.		65
	C	CO1	Ill	lustrate of modern network architectures fro design and performance perspective.	om a	70
PCC-CS602 (COMPUTER NETWORKS)	C	CO2		ustify the major concepts involved in wide-a networks (WANs), local area networks (LAI and Wireless LANs (WLANs).		70
	C	CO3	Γ	Derive Topologies for the enhancement of O TCP IP protocol suite.	SI/	75
PEC-IT601 D	C	CO1	E	xplain the fundamentals of digital image and processing.	d its	70
(IMAGE PROCESSING)	C	CO2	Pe	erform image enhancement techniques in sp and frequency domain.	atial	72
	C	CO3	F	Elucidate the mathematical modelling of imates restoration and compression.	age	80
		O4		Apply the concept of image segmentation		60
	C	CO5		Describe object detection and recognition	1	75
				techniques.		
PEC-IT602D	C	CO1	c	Explain and compare a variety of pattern lassification, structural pattern recognition a pattern classifier combination techniques.	and	60
(PATTERN RECOGNITION)	C	CO2		Summarize, analyze, and relate research in tattern recognition area verbally and in writi	the	70
	C	2O3	a	oply performance evaluation methods for pa nd critique comparisons of techniques made the research literature.	e in	75
	C	CO4		oply pattern recognition techniques to real-w problems such as document analysis and recognition.		70
	C	CO5		Implement simple pattern classifiers, classifoly ombinations and structural pattern recognized		60
		CO1		Critically assess existing theory and		75
OEC-IT601B	-	CO2		practice in the field of HRM. Develop an ability to undertake qualitative and quantitative research.		60
(HUMAN RESOURCE DEVELOPMENT AND ORGANIZATIONAL		CO3		Apply knowledge about qualitative and quantitative research to an independently constructed piece of work.		70
BEHAVIOR)		CO4		Respond positively to problems in unfamiliar contexts.		75
		CO5		Identify and apply new ideas, methods		60

		and way of thinking.	
	CO6	Demonstrate competence in communicating and exchanging ideas in a group context.	60
		,	
	CO1	Understand research problem formulation.	78
	CO2	Analyze research related information	82
	CO3	Follow research ethics	67
PROJ - CS601 (RESEARCH METHODOLOGY)	CO4	Understand that today's world is controlled by Computer, Information Technology, but tomorrow's world will be ruled by ideas, concepts, and creativity.	79
	CO5	Understanding that when IPR would take such an important place in the growth of individuals & nations, it is needless to emphasize the need for information about Intellectual Property rights to be promoted among students in general & engineering in particular.	75
	CO6	Understanding that IPR protection provides an incentive to inventors for further research work and investment in R & D, which leads to creation of new and better products, and in turn brings about economic growth and social benefits.	85
PCC-CS691 (DATABASE MANAGEMENT SYSTEMS)	CO1	Apply the knowledge of pure query language to write a query in relational algebra, relational calculus and construct the SQL queries for Open source and Commercial DBMS like MYSQL, ORACLE, and DB2.	80
	CO2	Apply the knowledge of entity relationship models to design the database for a given requirement specification.	75
	CO3	Apply the knowledge of query optimization algorithms to optimize the execution time of a query.	70
	CO4	Apply the knowledge of reducing anomalies during database design.	75
	CO5	Understand the transaction atomicity, consistency, isolation, durability for a given transaction-processing system and implement the isolation property based on concurrency control and serializability of scheduling.	70
	CO6	Understand different processes to secure the database.	65
	001	Tindone 14 4	00
	CO1	Understand the structure and	90

PCC-CS692 (COMPUTER NETWORKS)		organization of computer networks; including the division into network layers, role of each layer, and relationships between the layers, various network command, and network device.	
	CO2	Understand IPAddressing, Subnetting.	90
	CO3	Understand of transport layer concepts and protocol design; including connection oriented and connection-less models, techniques to provide reliable data delivery and algorithms for congestion control and flow control.	90
	CO4	Understand of Application layer concepts and protocol design.	80

MBA Department CO ATTAINMENT 2021-2022

Subject Code &	COs	Attainm
Subject Name		ent
MB 101 Managerial Economics (Micro)	CO1:To explain and demonstrate the different types of markets and features – Price determination under different markets along with concepts like Law of Variable Proportions and Returns to S Producers equilibrium with the help of Isoquants, Expansion path Elasticity of Substitution.	
	CO2: To acquire knowledge and develop ideas of these concepts in detail and analyse the applicability in real life situations.	85%
MB 102 ORGANIZATIONAL BEHAVIOUR	CO1: The student will be able to evaluate and analyse the various facets of organisationbehaviour including personality, perception, and attitude and job satisfaction.	92%
	CO2: The student will be able to understand the various organisation theories and analyse group behaviour, conflict, change and leadership concepts.	83%
MB 103 Business Communication	CO 1 To demonstrate competence inverbal business communication & "Process of Communication in an organization"	83%
	CO2 To demonstratecompetenceinthefundamentalsofbusiness writing & willenablethestudentstoaugmenttheirreportwritingskills	84%
	CO3 Itwillhelpthemtoidentifythe Barriers of Communication and measures to overcome.	83%
	CO4 Itwillenable themtoapply the expertise to frame professional cover letter and professional resume.	82%
MB 104	CO1: Student will develop an understanding of different conditions & warranties, the passing of ownership rights by applying the knowledge of the Sale of goods Act and different types of negotiable instruments in different socio environmental situations.	80%
	CO2: Analysis of companies formation, memorandum, articles, and prospectus will be done to the students for their proper understanding of the Companies Act. Consumer protection act is analyzed to them for	81%

	them to remember and if required to apply in real-life scenarios. Illustration of inflation and its impact on business, unfair trade practice for better understanding of the business	
MB 105	CO1 Students will be able to contemplate the ethical standards to be maintained in professional set ups.	85%
	CO2 Students will be able to analyze Indian values related to business enterprises and merge them with relevant global concepts.	84%
	CO3 Students will be able to work comfortably in the professional world.	86%
	CO4 Students will be able to emerge as successful Managers/ leaders and lead a bright life.	84%
MB 106	CO1 Understanding the concept of business or industry related operational problems and then applying the knowledge Operations Research to solve it.	
	CO2 Understanding the concept of Probability and Statistics to analyze the problems of Business processes.	65%

Subject Code & Subject Name	COs	Attain ment
MB 301 : ENTREPRENEURSHIP & PROJECT MANAGEMENT	CO1: Understand the concept of management, Organization, planning, Staffing and learn the Project evaluation, termination, and controlling process	82%
	CO2: To evaluate the role of entrepreneurs in economic development, and barriers, Identification of business opportunities, and feasibility studies.	98%
MB 302 Corporate	CO1To understand and apply the methods of environmental scanning, strategic planning techniques & formulation strategies	81%

Strategy	for holistic strategic management in organization.	
	CO2 To analyze and evaluate the strategic actions, strategic implementation and evaluation strategies.	83%
HRM 301 TEAM DYNAMICS AT WORK	CO1: be able to understand the meaning of group dynamics and evaluate the concepts and theories behind the group formations including the Schachter Study and its implications.	93%
	CO2: The student will be able to evaluate effective team building strategies and apply knowledge in solving contemporary issues related with teams in modern organisations	93%
HRM 304 Organizational	CO1: To apply organization theory for better understanding of organizational structure and design	83%
Design	CO2: To analyze different organizational models for reshaping organizations.	82%
MM 302: Digital & Social Media Marketing	CO1: To explain the understanding of digital & social media marketing plan that will address common marketing challenges	81%
5	CO2: Applying concepts, approaches & the practical aspects of various digital & social media marketing tools like SEO, Paid Search, Social, Mobile, Email & Display media & marketing analytics	81%
	CO3: Analyze key performance indicators tied to any digital & social Media program & Develop return on investment model for any digital & social marketing program	78%
	CO4: Apply creative ideas or evolve with existing ideas for development of effective digital & social marketing communication	82%
MM 303 :Integrated Marketing Communication	CO1: To explain the understanding of essential concepts & techniques for the development & designing of an effective IMC program	82%
	CO2: Applying concepts, approaches & the practical aspects of various communication tools	82%
	CO3: Analyze effectiveness of different IMC tools for business firms	77%
	CO4: Apply creative ideas for development of effective marketing communication	82%
FM 302 Project	CO1: To define the Project life cycle, the role of stakeholders and project life cycle, the role of stakeholders are represented by the role of stakeholders and project life cycle, the role of stakeholders are represented by the role of stakeholders and project life cycle, the role of stakeholders are represented by the role o	77%

Appraisal and Finance	management processes and to explain the concepts of prospecifications, financial projections, scope and team in Promanagement.	
	CO2: To describe and evaluate the risks involved in projects and associated costs as demonstrate the control and closure process relat project management.	75%
FM 304 Corporate Finance	CO1:To define and discuss the concepts & theories related to financial management.	77%
T manec	CO2:To describe and apply the various theories, tools and techniques of Corporate Finance to resolve real life financial problems	75%

Subject Code &	COs	Attain
Subject Name		ment
MB 201 Indian Economy and Policy	CO1: To Explain and design the concepts of circular flow, theo income determination, inflation, unemployment, LPG model, as we banking, trade policy and monetary reforms.	85%
	CO2: To Develop ideas of the Indian Economy and grasp the import of planning undertaken by the government of India.	83%
MB 202 Financial Reporting, Statement and Analysis	CO1: To explain the understanding of the concepts and apply the practical life like basic financial accounting concept, preparing boo accounts, introduction of Accounting Standard, preparation of fina statements and its analysis.	71%
	CO2: To Summarize the financial transactions in terms of Fina Statements and interpret Financial Statements by using diff financial tools and techniques.	74%
MB 203: Marketing Management	CO1: To identify & analyze the scope & significance of marketing in Domain Industry	80%
	CO2: To Analyze & examine marketing concepts & phenomenon to current business events in the industry	79%
	CO3: Map the various marketing environment variables & demonstrate them for designing marketing strategies for business firms	80%
	CO4: Demonstrate market analysis skill for developing innovative marketing strategies for firms	79%

CO1: To understand the suitable control technique in stores, Inventory, and vendor management is adopted for the production is identified.	80%
CO2: To analyze the scheduling techniques applied in the operations were learned by the students	75%
CO1: To identify the technologies and methods used for effective decision-making in an organization	92%
CO2: Make students understand the concepts and terminologies used in Database Management, Systems, SQL, Concurrency Management, and the extended part of data storage technology, Data Warehousing.	96%
CO1: The student will be able to understand and apply the various concepts behind Human Resource Management and development including planning, Performance Appraisal Systems and strategic HR management.	95%
CO2: The student will be able to understand and apply the theories and strategic concepts behind compensation Management, Industrial Relations and discipline including workers participation in management.	85%
	Inventory, and vendor management is adopted for the production is identified. CO2: To analyze the scheduling techniques applied in the operations were learned by the students CO1: To identify the technologies and methods used for effective decision-making in an organization CO2: Make students understand the concepts and terminologies used in Database Management, Systems, SQL, Concurrency Management, and the extended part of data storage technology, Data Warehousing. CO1: The student will be able to understand and apply the various concepts behind Human Resource Management and development including planning, Performance Appraisal Systems and strategic HR management. CO2: The student will be able to understand and apply the theories and strategic concepts behind compensation Management, Industrial

4th Semester

Subject Code & Subject Name	COs	Attain ment
HR 401 MANPOWER PLANNING, RECRUITMENT& SELECTION	CO1: Student will be able to understand and analyze the various manpower planning mechanisms in an organization including forecasting techniques, management information systems and human resources audits.	93%
	CO2: Student will be able to apply and exercise various HRM implementation strategies including recruitment and solve case studies pertaining to real life organisational issues and situations.	93%
HR402Employee Relations &Labour Laws	CO1:To understand EPM,WPM ,concept of collective bargaining,trade unionism in India	84%
Laws	CO2:To apply the various labour legislations in real life industrial scenario	79%
HR 404Performance Management System	CO1: To identify and apply performance planning ,monitoring, appraisal techniques & strategies for better performance management.	83%
	CO2: To understand balance scorecard, competency mapping for application in reward management, employee engagement and	82%

	potential appraisal	
HR 406 INTERNATIONAL HRM	CO1: Student will be able to understand International human resources management and development including the recruitment processes of such candidates.	93%
	CO2: The student will be able to remember and apply legislative measures meant for industrial relations, CSR and employee representation in the international sector and create compensation plans commensurate with the same.	93%
MM 401	CO1:Analysis consumer behaviour and its Impact on marketing strategies. Illustration of consumer decision process. Studednts will be understanding demographic and psychographic characteristics and market segmentation. Analysis of the relation between consumer perception with marketing stimuli. Students will learn to apply the knowledge of consumer motivation for marketing strategy and its relation with corporate social responsibility.	82%
	CO2: Students will develop the understanding of characteristics and functions of attitude, cross-cultural understanding of consumer behaviour and data analysis for consumer feedback researches. Students will comprehend and write effective technical reports. They will be able to analyse case studies, explain relevant materials, communicate effectively, identify the appropriate key words, use grammatically correct English for documentation.	85%
MM 403: Sales & Distribution	CO1: To explain the understanding of sales & distribution processes in Organization	77%
Management	To get familiarized with concepts, approaches & the practical aspects of the key decision-making variables in sales management & distribution channel management	75%
	CO3: To explain market analysis methods & selling concepts	78%
	CO4: To develop Performance evaluation methods, ethics, trends in sales & distribution management	76%
MM 404: Service Marketing	CO1: To explain the understanding of types, nature, classification & marketing mix of service marketing	77%
	CO2: Analyze service product concept, branding & service positioning that transforming service marketing to a great extent	75%
	CO3: To explain market analysis methods of service marketing	78%
	CO4: Demonstrate the role of identifying the people in service & the role of customer in service delivery	76%
MM 406:	CO1: To explain the understanding of global business	77%

International	activities, marketing processes in international business	
Marketing	To get familiarized with concepts, approaches & the practical aspects of the key decision-making variables & global forces that transforming international marketing	75%
	CO3: To develop general perspective about managing international marketing	76%
	CO4: To develop evaluation methods for International Marketing both in operational as well as strategic context	78%
OM 402 Behavioral Operations	CO1: To apply experimental learning theories & organizational behavior to ensure performance in work design	83%
Management	CO2: To understand emotional intelligence in operations management & supply chain management	82%
FM 401 Investment Analysis & Portfolio Management	CO1To explain the understanding of the concepts and apply them like portfolio diversification, Construction, portfolio management, portfolio revision, portfolio evaluation, portfolio protection, and portfolio performance measures.	77%
	CO2To implement strategies to make an impact on the students in taking investment decisions, and properly manage the portfolio.	75%
FM402 Managing Banks & Financial Institutions	CO1To explain the understanding of the concepts and apply them like banking industry models, bank support mechanism, Basel committee I & II, interest rate, risk management, liquidity management and credit risk management. CO2 Evaluate and analyse the fundamentals & technical aspects of	80%
	managing banks and financial institutions.	79%
FM405International Finance	CO1To explain the understanding of the concepts and apply them like international financial management, international monetary System, balance of payments, exchange rate determination and foreign exchange market.	75%
	CO2Evaluate and analyse the fundamentals & technical aspects of International financial market.	72%
FM406 Financial Markets and Services	CO1To Discuss the Indian Financial System and multiplicity of Financial Instruments and understand the Indian financial system, money market, secondary market, SEBI, mutual Funds and credit rating agencies.	76%
	CO2 Examine Mutual Funds and Merchant Banking under the nodal agency SEBI.	80%

Civil Engineering Department CO ATTAINMENT 2021-2022

Paper Code (Name)	СО	COURSE OUTCOMES(COs)	ATTAINED (%)				
	1 ST SEMESTER						
	CO1	Analyse microscopic chemistry in terms of atomic and molecular orbitals and intermolecular forces to solve different engineering problems.	72				
BS-PH101 Chemistry-I	CO2	Rationalise bulk properties and processes using thermodynamic consideration for various engineering applications.	61				
	CO3	Distinguish the ranges of the electromagnetic spectrum used for exciting different molecular energy levels in various spectroscopic techniques.	82				
	CO4	Rationalise periodic properties (ionization potential, electro negativity, oxidation states) for various engineering applications.	87				
	CO5	Apply the knowledge of structure, stability and reactivity of organic molecular species in order to gain a clear insight into the mechanism of chemical and biochemical reacting systems used in various engineering problems.	75				
BS PH-101 (Physics-I)	CO1	Apply the knowledge of simple harmonic motion (ideal and real cases) and basic concepts of Mechanics for the solution of complex problems.	81				
	CO2	Utilize the knowledge of vector calculus and different coordinate system for the solution of complex problems.	72%				
	CO3	Apply the knowledge of physical optics (interference, diffraction, polarization) and LASER to solve different complex problems	75%				
	CO4	Apply the knowledge of dielectric and magnetic properties of materials to interpret different complex systems.	83%				
	CO5	Utilize the knowledge of Quantum Physics to analyze a complex engineering problem.	69%				
	CO6	Apply the knowledge statistical mechanics to solve complex problems.	79%				
BS-M101/ BS-M102 Mathematics –IA*/ Mathematics –IB *	CO1	Understand the properties of complex functions and their behavior. Know the techniques for evaluating complex integrals and series. Learn the theory of analytic functions, conformal mapping, the Cauchy-Riemann equations, concept of Taylor and Laurent series, complex integration, Liouville's theorem, residues and the Residue Theorem	75%				
	CO2	Understand the concept of a differential equation and its solution. Know the techniques for solving first-order and second-order differential equations,	78%				

		Cauchy-Euler differential equation, Bessel's equation, indicial equations, power-series solution.	
	CO3	Understand the concept of integration over two or three-dimensional regions/volumes. Know the techniques for evaluating double and triple integrals, including change of variables and polar, cylindrical, and spherical coordinates	78%
	CO4	Understand the statement of Stokes' theorem, Green's theorem and how to apply it to compute line integrals. Understand the concept of a curve and its parameterization. Know the techniques for evaluating line integrals, including parametric and vector forms. Understand the concept of a surface and its parameterization. Know the techniques for evaluating surface integrals, including parametric and vector forms. Understand volume integrals and Gauss divergence theorem.	74%
	CO1	Organize/Design the experiment related to Chemical Science as applicable in various Engineering problems.	71%
BS-PH191/	CO2	Generate experimental Data related to Chemical Science as applicable in complex problems.	68%
BS-CH191	CO3	Conduct actual experiment related to Chemical Science as applicable in different engineering application.	78%
Physics-I Laboratory (Gr-A)/ Chemistry-I Laboratory (Gr-B)	CO4	Analyze data and draw conclusion related to Chemical Science as applicable in various engineering problems.	83%
	CO5	Analyze with proper experimental data and graphs and communicate effectively related to Chemical Science as applicable in different engineering fields.	85%
	CO1	Organize/design the experiment related to various systems and interpret the physical properties of material.	72%
BS PH-191	CO2	Generate experimental Data related to electrical and magnetic properties.	80%
(Physics-Lab 1)	CO3	Conduct actual experiment related to optical phenomena.	78%
	CO4	Analyze data and draw conclusion related to quantum physics.	85%
	CO5	Analyze with proper experimental data and graphs and communicate effectively.	75%
ES-ME191/ ES- ME192	CO1	Introduction to engineering design and its place in society	87%
Engineering	CO2	Exposure to the visual aspects of engineering design	85%
Graphics & Design (Gr-B)/ Workshop	CO3	Exposure to engineering graphics standards	89%
/Manufacturing Practices(Gr-A)	CO4	Exposure to solid modelling	84%
		2 ND SEMESTER	
BS-CH201	CO1	Analyse microscopic chemistry in terms of atomic and molecular orbitals	69%

Chemistry-I		and intermolecular forces to solve different engineering problems.	
	CO2	Rationalise bulk properties and processes using thermodynamic consideration for various engineering applications.	72%
	СОЗ	Distinguish the ranges of the electromagnetic spectrum used for exciting different molecular energy levels in various spectroscopic techniques.	78%
	CO4	Rationalise periodic properties (ionization potential, electro negativity, oxidation states) for various engineering applications.	81%
	CO5	Apply the knowledge of structure, stability and reactivity of organic molecular species in order to gain a clear insight into the mechanism of chemical and biochemical reacting systems used in various engineering problems.	82%
	CO1	Apply the knowledge of simple harmonic motion (ideal and real cases) and basic concepts of Mechanics for the solution of complex problems.	82%
	CO2	Utilize the knowledge of vector calculus and different coordinate system for the solution of complex problems.	79%
BS PH-201	CO3	Apply the knowledge of physical optics (interference, diffraction, polarization) and LASER to solve different complex problems	74%
(Physics-I)	CO4	Apply the knowledge of dielectric and magnetic properties of materials to interpret different complex systems.	86%
	CO5	Utilize the knowledge of Quantum Physics to analyze a complex engineering problem.	76%
	CO6	Apply the knowledge statistical mechanics to solve complex problems.	69%
BS-M201/BS-M202 Mathematics –IIA# / Mathematics –IIB #	CO1	Understand the properties of complex functions and their behavior. Know the techniques for evaluating complex integrals and series. Learn the theory of analytic functions, conformal mapping, the Cauchy-Riemann equations, concept of Taylor and Laurent series, complex integration, Liouville's theorem, residues and the Residue Theorem.	85%
	CO2	Understand the concept of a differential equation and its solution. Know the techniques for solving first-order and second-order differential equations, Cauchy-Euler differential equation, Bessel's equation, indicial equations, power-series solution.	88%
	СОЗ	Understand the concept of integration over two or three-dimensional regions/volumes. Know the techniques for evaluating double and triple integrals, including change of variables and polar, cylindrical, and spherical coordinates	85%
	CO4	Understand the statement of Stokes' theorem, Green's theorem and how to apply it to compute line integrals. Understand the concept of a curve and its parameterization. Know the techniques for evaluating line integrals, including parametric and vector forms. Understand the concept of a surface and its parameterization. Know the techniques for evaluating surface	80%

	integrals, including parametric and vector forms. Understand volume integrals and Gauss divergence theorem.	
CO1	to be able to use the correct vocabulary in order to express oneself in English properly	62%
CO2	to be able to identify common errors in terms of grammar and choice of words in English	58%
CO3	to be able to describe , discuss , and interpret reading input in English	75%
CO4	to be able to demonstrate that one can express oneself in English through writing	64%
CO1	Organize/Design the experiment related to Chemical Science as applicable in various Engineering problems.	72%
CO2	Generate experimental Data related to Chemical Science as applicable in complex problems.	78%
CO3	Conduct actual experiment related to Chemical Science as applicable in different engineering application.	83%
CO4	Analyze data and draw conclusion related to Chemical Science as applicable in various engineering problems.	76%
CO5	Analyze with proper experimental data and graphs and communicate effectively related to Chemical Science as applicable in different engineering fields.	84%
CO1	Organize/design the experiment related to various systems and interpret the physical properties of material.	80%
CO2	Generate experimental Data related to electrical and magnetic properties.	78%
CO3	Conduct actual experiment related to optical phenomena.	85%
CO4	Analyze data and draw conclusion related to quantum physics.	68%
CO5	Analyze with proper experimental data and graphs and communicate effectively.	79%
CO1	Introduction to engineering design and its place in society ■	95%
CO2	Exposure to the visual aspects of engineering design	95%
CO3	Exposure to engineering graphics standards	95%
CO4	Exposure to solid modelling	95%
CO1	to be able to describe , discuss , and interpret the listening input in English	55%
CO2	to be able to demonstrate that one can express oneself in English through speaking	54%
CO3	to be able to describe , discuss , and interpret reading input in English	77%
CO4	to be able to demonstrate that one can express oneself in English through writing	67%
	CO2 CO3 CO4 CO5 CO1 CO2 CO3 CO4 CO5 CO1 CO2 CO3 CO4 CO5 CO1 CO2 CO3	to be able to use the correct vocabulary in order to express oneself in English properly to be able to identify common errors in terms of grammar and choice of words in English to be able to describe, discuss, and interpret reading input in English to be able to demonstrate that one can express oneself in English through writing Organize/Design the experiment related to Chemical Science as applicable in various Engineering problems. Co2 Generate experimental Data related to Chemical Science as applicable in complex problems. Co3 Conduct actual experiment related to Chemical Science as applicable in different engineering application. Analyze data and draw conclusion related to Chemical Science as applicable in various engineering problems. Co4 Analyze with proper experimental data and graphs and communicate effectively related to Chemical Science as applicable in different engineering fields. Co5 Generate experimental Data related to various systems and interpret the physical properties of material. Co6 Generate experimental Data related to electrical and magnetic properties. Co7 Conduct actual experiment related to optical phenomena. Co8 Analyze with proper experimental data and graphs and communicate effectively. Co9 Exposure to the visual aspects of engineering design Co9 Exposure to the visual aspects of engineering design Co9 Exposure to engineering graphics standards Co9 Exposure to solid modelling co9 to be able to describe, discuss, and interpret the listening input in English through speaking Co9 to be able to demonstrate that one can express oneself in English co9 to be able to demonstrate that one can express oneself in English

3 RD SEMESTER			
CE(ES)302	CO1	Understanding the various sources of energy and its interaction with the environment	67%
Energy Science	CO2	Designing energy efficient structures	67%
CE(HS)302 – INTRODUCTION TO CIVIL ENGINEERING	CO1	= To acquire knowledge about basic civil engineering techniques and apply the acquired knowledge in basic civil engineering problems	77%
CE(ES)392 Computer aided Civil Engineering Drawing	CO1	To understand the concept of engineering drawings and apply the same using computer aided design technology	79%
CE(ES)401	CO1	4 TH SEMESTER To understand about the properties and characteristics of fluid	90.8%
Introduction to Fluid Mechanics	CO2	To understand, analyze and evaluate the different characteristics, pattern and types of fluid flow and hydraulic machines.	90.2%
	CO1	Deterministic approaches for understanding interaction between material characteristic with load and time	89.9%
CE(ES)40 Introduction to Solid Mechanics	CO2	Knowledge about materials and structures and understand their deformation under load and Mathematical representation of the structure property	89.6%
CE(PC)401- Soil Mechanics – I	CO1	To understand, evaluate and gather knowledge about physical properties of soil and analyze the soil-water interaction system.	93.3%

	CO2	To understand and analyze the stress distribution and shear strength characteristics of soils.	92.8%
CE(PC)402- Environmental	CO1	Analyzing the sources, requirements, quality and treatment of water and design of the patterns of conveyance and distribution	92.2%
engineering -I	CO2	Analyzing the characteristics of municipal solid waste and it's handling by engineering systems.	92.4%
CE(PC)403- Surveying and	CO1	To understand the basic principles of surveying and geomatics	92.4%
Geomatics	CO2	To evaluate the different techniques of surveying and geomatics in solving basic problems and also analyze different and advanced technique of surveying	92.2%
CE(PC)404-	CO1	Understanding the properties , raw materials required for designing fresh and hardened concrete	92%
CONCRETE TECHNOLO GY	CO2	Analysing the mix design of concrete	91%
CE(HS)401-	CO1	Understanding the historical perspectives in the overall development of civil engineering	92.5%
CE-SOCIETAL and global impact	CO2	Understanding the challenges of future civil engineering projects	92.8%
CE(ES)491- FLUID LABORATORY	CO1	Apply the knowledge of fluid characteristics for determination of various parameters related to fluid flow through experimentation.	94.4%
CE(ES)492- SOLID MECHANICS LABORATORY	CO1	Apply the knowledge of material characteristics to determine various strength parameters through experimentation.	94%
CE(ES)493- ENGGINEERING GEOLOGY LABORATORY	CO1	Apply the knowledge of Engineering Geology in determining the physical properties of rocks and minerals and to understand and delineate different geological structures by the interpretation of geological maps	94.4%

CE(PC)493- SURVEYING AND GEOMATICS LABORATORY	CO1	Application of the knowledge of surveying and geomatics for determination of different methods of surveying for measurement	94.3%
CE(PC)494-CONC LAB	CO1	Applying the knowledge of Concrete technology in determining the various parameters of Concrete and its design.	94.5%
		5 TH SEMESTER	
		To understand about the concept of limit state and working stress	
CE(PC)501-	CO1	method of design.	70.4%
DESIGN OF RC STRUCTURES	CO2	To understand, analyze and evaluate about the design of different types of RC structures by Limit State Method and Working Stress Method.	70.2%
CE(PC)502	CO1	Understanding the basic concepts of Hydrology.	86.1%
ENGINEERING HYDROLOGY	CO2	Analysis of different hydrological parameters and mitigation methods of floods and flood management.	85.8%
CE(PC)503-structURAL	CO1	Knowledge of static, determinate and indeterminate structures	83.1%
ANALYSIS -I	CO2	Analysis of all type of structure of its stability and instability	82.8%
CE(PC)504-SOIL	CO1	To understand, evaluate and analyze about consolidation, compaction and earth pressures of soil.	85.1%
MECHANICS - 2	CO2	To understand, analyze, evaluate the bearing capacity and settlement analysis of shallow foundation and slope stability analysis of any manmade or natural slope.	84.7%
	CO1	Define the basic concepts and terminologies of waste water engineering, hazardous waste management, Plumbing systems for water supply	90.3%

CE(PC)505-		and waste water disposal	
ENVIRONMENT AL ENGINEERING 2	CO2	Apply the methods of quantifying sanitary sewage and storm sewage, solve mathematical problems and design different processes operations involved in waste water treatment.	90%
CE(PC)506- TRANSPORTATION ENGINEERING	CO1	TO UNDERSTAND THE KNOWLEDGE OF PLANNING, DESIGN AND THE FUNDAMENTAL PROPERTIES OF HIGHWAY MATERIALS IN HIGHWAY ENGINEERING	94.2%
	CO2	APPLY AND INTERPRET THE KNOWLEDGE OF GEOMETRIC DESIGN AND TRAFFIC STUDIES	93.4%
CE(PC)591-RC DESIGN SESSIONAL	CO1	Apply the knowledge of RCC structure.	69.7%
CE(PC)594-SOIL MECHANICS LABORATORY	CO1	Understand every aspect of soil investigation and prepare a lab report	94.8%
CE(PC)595- ENVIRONMENT AL ENGINEERING LABORATORY	CO1	Organize/Design the experiment related to Digital Signal Processing Lab.	85.1%
CE(PC)596- TRANSPORTATI ON LABORATORY	CO1	TO understand the application of different laboratory tests.	86.4%
CE(PC)597-COMPUTER APPLICATION IN CIVIL ENGINEERING	CO1	Understanding Computer applications to apply in civil engineering field	94.06%

6TH SEMESTER

		6 ^{1H} SEMESTER	
CE(PC)601- CONSTRUCTIO N	CO1	To Understand how structures are built.	96%
ENGINEERING AND MANAGEMENT	CO2	To evaluate the necessary steps for the completion of a project from the beginning to the end.	95%
CE(PC)602- ENGINEERING	CO1	To understand the principles of economics and it's application on value analysis of civil engineering projects	78.7
ECONOMICS,ES TIMATION AND COSTING	CO2	To understand the technical specifications of rate analysis, Tender and valuation performed for a project and analyse the cost of a structure through these parameters.	78.4
CE(PC)603-WATER RESOURCE ENGINEERING	CO1	To apply the fundamentals of flow in open channel to design them accordingly	90.17
	CO2	To understand the different concepts of Irrigation in connection with the water requirement for different crops and obtain knowledge about various ground water resources	89.37
CE(PC)604- DESIGN OF	CO1	Understanding the properties and its utility in civil engineering design	83%
STEEL STRUCTURES	CO2	Analysis of the use of steel in designing various structures	83%
CE(PE)601B- FOUNDATION ENGINEERING	CO1	Gain basic knowledge about the bearing capacity of shallow and deep foundation at site and gain some knowledge about soil investigation and exploration	84.2
	CO2	Analyse the design of sheet pile structure on the basis of earth pressure theories and understand and apply various types of ground improvement methods for solving complex geotechnical problems	84%
CE(PE)602A- BUILDING,CONSTRUCT ION AND PRACTICE	CO1	Understand the knowledge of various structures that used in civil engineering construction	87.8

CE(PC)693-Water Resource Laboratory	CO1	To apply different techniques for proper use of water as an useful resource.	87%
CE(PC)694-STEEL STRUCTURE DESIGN SESSIONAL	CO1	Apply the knowledge of steel structure in design	74.7
CE(PC)695-QUANTITY SURVEYESTIMA TION AND VALUATION SESSIONAL	CO1	To evaluate about the specification and valuation of works and materials used in any civil engineering construction project	79.3

7TH SEMESTER

CE(OE)701A-	CO1	understand the overview of how the metro system works	84.9%
METRO SYSTEM AND ENGINEERING	CO2	to apply the knowledge of different metro sysytem engineeirng works	84.5%
	CO1	To understand and evaluate about the characteristics of various types and components of dams and their selection procedure.	82.8%
CE(PE)701C- HYDRAULIC STRUCTURES	CO2	To analyze about the stability analysis of different hydraulic structures (dam) and estimate about different types of forces, seepage loss and discharge calculation acting on dams and their remedial measures .	82.1%
CE(PE)702A- PRESTRESS CONCRETE	CO1	Understanding the purpose, parameters and application of Prestressed Concrete structure	96.3
	CO2	Design of Prestressed Concrete Structures	96.4
CE(PE)703A-	CO1	Understanding the concepts of air and noise pollution, methods of their	91%

AIR AND NOISE POLLUTION		measurement.	
	CO2	Analyze the concepts of air and noise pollution solving mathematical problems and design techniques for air and noise pollution control	90.6%
CE(PE)704C-COASTAL	CO1	Understanding the various mechanisms involved in generation of tides, currents and waves and its implications on sediment transport.	80.6%
HYDRAULICS AND SEDIMENT TRANSPORT	CO2	Applying the knowledge of wave current mechanics and sediment transport in analyzing different shore line and coastal structures	80.26%
CE(PE)705A- RAILWAY AND	CO1	to acquire the knowledge of basic railway engineering	72.2%
AIRPORT ENGINEERING	CO2	to acquire the knowledge of basic airport engineering.	71.13%

8TH SEMESTER

CE(PE)801D PAVEMENT MATERIALS	CO1	To understand about the different materials for suitability of road and their availability characteristics.	77.6
	CO2	To understand and evaluate the properties of soil and physical modification of pavement works	77.3
CE(0E)801C DEEP FOUNDATION	CO1	To understand, evaluate and analyze about the selection of suitable type of deep foundation for various site conditions.	77.56
	CO2	To understand, analyze and evaluate the concept about bearing capacity of different types of deep foundations.	77

Course Details:

Course Name:	Data Structure & Algorithm
Course Code:	PCC-CS301
Name of the Program:	B.Tech
Department	Computer Science Engineering
Semester	3 rd Semester

COURSE OUTCOME:

On successful completion of this course, students should be able to:

CO1	To learn and apply the basics of abstract data types.
CO2	To learn and apply the principles of linear and nonlinear data structures.
CO3	To build an application using sorting and searching.
CO4	Design applications with the knowledge of computation and principles of data
	structures.

Data Structure &		CO	Attainment
Algorithm	CO1	To learn and apply the	10%
		basics of abstract data types.	
	CO2	To learn and apply the	15%
		principles of linear and	
		nonlinear data structures.	
	CO3	To build an application	15%
		using sorting and searching.	
	CO4	Design applications with the	25%
		knowledge of computation	
		and principles of data	
		structures.	

CO-PO Mapping:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1		V										
CO2		V										
CO3												
CO4			V									

Course Details:

Course Name:	Data Structure & Algorithm Lab
Course Code:	PCC-CS391
Name of the Program:	B.Tech
Department	Computer Science Engineering
Semester	3 rd Semester

COURSE OUTCOME:

On successful completion of this course, students should be able to:

CO1	Design and develop programs using data structure & algorithm concepts.
CO2	Develop simple applications using linear and non-linear data structures & algorithms concepts and understand the access mechanisms and other use and functionalities.
CO3	Implement searching and sorting concepts
CO4	Implement the concepts of graph and hashing

Data Structure &		CO	Attainment
Algorithm Lab	CO1	Design and develop programs using data structure & algorithm concepts.	15%
	CO2	Develop simple applications using linear and non-linear data structures & algorithms concepts and understand the access mechanisms and other use and functionalities.	10%
	CO3	Implement searching and sorting concepts.	10%
	CO4	Implement the concepts of graph and hashing	25%

CO-PO Mapping:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1		V	V									
CO2		V										
CO3		V										
CO4												

Course Details:

Course Name:	Computer Organization
Course Code:	PCC-CS302
Name of the Program:	B.Tech
Department	Computer Science Engineering
Semester	3 rd Semester

COURSE OUTCOME:

On successful completion of this course, students should be able to:

CO1	Understand basic structure of digital computer, stored program concept and different
	arithmetic and control unit operations.
CO2	Understand basic structure of different combinational circuits- multiplexer, decoder,
	encoder etc.
CO3	Perform different operations with sequential circuits.
CO4	Understand memory and I/O operations.

Computer		CO	Attainment
Organization	CO1	Understand basic structure	15%
		of digital computer, stored	
		program concept and	
		different arithmetic and	
		control unit operations.	
	CO2	Understand basic structure	15%
		of different combinational	
		circuits- multiplexer,	
		decoder, encoder etc.	
	CO3	Perform different operations	25%
		with sequential circuits.	
	CO4	Understand memory and	10%
		I/O operations.	

CO-PO Mapping:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1												
CO2					V		V					
CO3									$\sqrt{}$			
CO4					V		V					

Course Details:

Course Name:	Computer Organization Lab
Course Code:	PCC-CS392
Name of the Program:	B.Tech
Department	Computer Science Engineering
Semester	3 rd Semester

COURSE OUTCOME:

On successful completion of this course, students should be able to:

CO1	Understand basic structure of digital computer, stored program concept and different arithmetic and control unit operations.
CO2	Understand basic structure of different combinational circuits- multiplexer, decoder,
	encoder etc.
CO3	Perform different operations with sequential circuits.
CO4	Understand memory and I/O operations.

Computer		CO	Attainment
Organization Lab	CO1	Understand basic structure	10%
		of digital computer, stored	
		program concept and	
		different arithmetic and	
		control unit operations.	
	CO2	Understand basic structure	15%
		of different combinational	
		circuits- multiplexer,	
		decoder, encoder etc.	
	CO3	Perform different operations	15%
		with sequential circuits.	
	CO4	Understand memory and	10%
		I/O operations.	

CO-PO Mapping:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1							V					
CO2							V					
CO3									V			
CO4							$\sqrt{}$					

Course Details:

Course Name:	Compiler Design
Course maine.	Computer Design

Course Code:	PCC-CS501
Name of the Program:	B.Tech
Department	Computer Science Engineering
Semester	5 th Semester

COURSE OUTCOME:

On successful completion of this course, students should be able to:

CO1	To apply the basic concept of compilers and discuss on the components as well as
	the strengths and weaknesses of various phases of designing a compiler.
CO2	To understand the role of finite automata in compiler design.
CO3	To design and analyze algorithms for syntactic or parsing techniques and semantic
	analysis of the process of designing compilers.
CO4	Apply the knowledge of Type Checking and Run-Time Environments in designing a
	compiler.
CO5	Apply the knowledge of Intermediate Code Generation, Code Optimization and
	Code Generations in designing a compiler.

COAttain ment of Subjects

		СО	Attainment
	CO1	To apply the basic concept of compilers and discuss on	5%
		the components as well as	
		the strengths and	
		weaknesses of various	
		phases of designing a compiler.	
	CO2	To understand the role of	10%
		finite automata in compiler	
	G02	design.	100/
	CO3	To design and analyze algorithms for syntactic or	10%
Compiler Design		parsing techniques and	
PCC-CS501		semantic analysis of the	
		process of designing	
		compilers.	
	CO4	Apply the knowledge of	15%
		Type Checking and Run-	
		Time Environments in	
	G0.5	designing a compiler.	1.70/
	CO5	Apply the knowledge of	15%
		Intermediate Code Generation, Code	
		Optimization and Code	
		Generations in designing a	
		compiler.	

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1												
CO2												
CO3												
CO4		V			V		V					
CO5												

Course Details:

Course Name:	Operating Systems
Course Code:	PCC-CS502
Name of the Program:	B.Tech
Department	Computer Science Engineering
Semester	5 th Semester

COURSE OUTCOME:

On successful completion of this course, students should be able to:

CO1	Understand processes and threads.
CO2	Design algorithms for process scheduling for a given specification of CPU
	utilization, Throughput, Turnaround Time, Waiting Time and Response Time.
CO3	For a given specification of memory organization develop the techniques for
	optimally allocating memory to processes by increasing memory utilization and for
	improving the access time. Design and implement file management system.

		CO	Attainment
	CO1	Understand processes and	20%
		threads.	
Operating Systems	CO2	Design algorithms for	15%
		process scheduling for a	
		given specification of CPU	
		utilization, Throughput,	
		Turnaround Time, Waiting	
		Time and Response Time.	
	CO3	For a given specification of	15%
		memory organization	
		develop the techniques for	
		optimally allocating	
		memory to processes by	
		increasing memory	
		utilization and for	
		improving the access time.	
		Design and implement file	
		management system.	

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1							$\sqrt{}$					
CO2			V	V						V		
CO3				V			V					

Course Details:

Course Name:	Operating System Lab
Course Code:	PCC-CS592
Name of the Program:	B.Tech
Department	Computer Science Engineering
Semester	5 th Semester

COURSE OUTCOME:

On successful completion of this course, students should be able to:

CO1	To Analyze different aspects of Linux.
CO2	To Create or design different scripts using shell programming.
CO3	To Create or design different scripts using shell programming.
CO4	Create shared memory with the implementation of reading from, write into shared
	memory.

CO Attainment of Subjects

		CO	Attainment
	CO1	To Analyze different	10%
		aspects of Linux.	
Operating System	CO2	To Create or design	15%
Lab		different scripts using shell	
PCC-CS592		programming.	
	CO3	To Create or design	15%
		different scripts using shell	
		programming.	
	CO4	Create shared memory with	15%
		the implementation of	
		reading from, write into	
		shared memory.	

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1												
CO2												
CO3			V	V								
CO4				V								

Course Details:

Course Name:	Object Oriented Programming
Course Code:	PCC-CS503
Name of the Program:	B.Tech
Department	Computer Science Engineering
Semester	5 th Semester

COURSE OUTCOME:

On successful completion of this course, students should be able to:

CO1	Specify simple abstract data types and design implementations, using abstraction functions to document them.
CO2	Recognize features of object-oriented design such as encapsulation, polymorphism, inheritance, and composition of systems based on object identity
CO3	Name and apply some common object-oriented design patterns and give examples of their use
CO4	Design applications with an event-driven graphical user interface.

COAttainmentofSubjects

		CO	Attainment
	CO1	Specify simple abstract data	10%
		types and design	
Object Oriented		implementations, using	
Programming		abstraction functions to	
		document them.	
	CO2	Recognize features of	15%
		object-oriented design such	
		as encapsulation,	
		polymorphism, inheritance,	
		and composition of systems	
		based on object identity	
	CO3	Name and apply some	15%
		common object-oriented	
		design patterns and give	
		examples of their use	
	CO4	Design applications with an	5%
		event-driven graphical user	
		interface.	

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1												
CO2												
CO3					V							
CO4					1							

Course Details:

Course Name:	Object Oriented Programming Lab
Course Code:	PCC-CS593
Name of the Program:	B.Tech
Department	Computer Science Engineering
Semester	5 th Semester

COURSE OUTCOME:

On successful completion of this course, students should be able to:

CO1	Design and develop java programs using object oriented programming concepts
CO2	Develop simple applications using object oriented concepts such as package, exceptions
CO3	Implement multi-threading, and generics concepts
CO4	Create GUIs and event driven programming applications for real world problems

CO Attainment of Subjects

Object Oriented		CO	Attainment
Programming Lab	CO1	Design and develop java programs using object oriented programming	15%
	CO2	Develop simple applications using object oriented concepts such as package, exceptions	15%
	CO3	Implement multi-threading, and generics concepts	15%
	CO4	Create GUIs and event driven programming applications for real world problems	15%

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1		V										
CO2		V										
CO3												
CO4		V			V							

Course Details:

Course Name:	Software Engineering
Course Code:	ESC 501
Name of the Program:	B.Tech
Department	Computer Science Engineering
Semester	5 th Semester

COURSE OUTCOME:

On successful completion of this course, students should be able to:

CO1	Apply basic SW engineering methods and practices different models, and their appropriate application, SRS Document.
CO2	Determine the role of project management including planning, scheduling, risk management, etc.
CO3	An understanding of software testing approaches such as unit testing and integration testing.
CO4	An understanding of software evolution and related issues such as version management.

CO-PO Mapping:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1					V							
CO2			V	V						$\sqrt{}$		
CO3					V		V					
CO4					V		V					

		CO	Attainment
Software Engineering	CO1	Apply basic SW engineering methods and practices different models, and their appropriate application, SRS Document.	15%
	CO2	Design the role of project management including planning, scheduling, risk management, etc.	15%
	CO3	An understanding of software testing approaches such as unit testing and integration testing.	15%
	CO4	An understanding of software evolution and related issues such as version management.	10%
PaperCode (Name)	CO Num ber	Course Outcomes(CO)	ATTAINED

HSMC301 Economics for Engineers	CO1	Analyze the economic decisions making, engineering costs & estimation and classification of costs by applying the knowledge of estimating models. Student will develop an understanding of cash-flow, Rate of return analysis in different socioenvironmental situations.	15 %
	CO2	Analyze the inflation and price change would be done to the students for the proper understanding of the price-indexes in economic analysis. Effect of inflation & deflation is analyzed to them to remember and if required to apply in real-life scenarios.	25 %
	CO3	Recognize the types of property, depreciation and expenses and its impact on business, for better understanding of the business environment and apply the knowledge of it.	16 %

Mapping of Course Outcomes and Program Outcomes for the subject Economics for Engineers(HSMC301)

CourseO		Program										
utcomes		Outcome										
		S										
	PO1	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12										
CO1		✓		✓								
CO2		√		✓								
CO3							>					✓

PaperCode(Name)	CO Number	Course_Outcoms (CO)	ATTAINED		
PEC-IT501B ArtificialInte lligence	CO1	Apply the goodprogramming skillsto formulate thesolutions forcomputationalpr oblems.	25%		
	CO2	Design and developsolutions forinformed anduninformed searchproblemsinA I.	20%		
	CO3	Understandandenric h knowledge toselect and apply Altools to synthesizeinformati on anddevelopmodelsw ithin constraints ofapplicationarea.	25%		

$Mapping\ of\ Course Outcomes\ and\ Program Outcomes for\ the Artificial Intelligence$

CourseO		Program										
utcomes		Outcome										
		S										
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	✓				✓	✓					✓	
CO2			√	√						✓		
CO3					√		√					

Paper Code(Name	CO Number	CourseOutcomes(CO)	ATTAINED
	CO1	Analyze the concept of innovation andentrepreneurship, contributions of entrep reneurs to the society, risk-opportunities perspective by applying the knowledge of factors affecting them.	25%
HSMC501, Industrial Management	CO2	Analyze the project management, issuesandproblemsinprojectmanagement, projectlife cycleinitiation/conceptualization phase, determination ofproject feasibility studies would be donetothestudents fortheirproper understandingofsocialcostbenefitan alysis.	20%
	CO3	Identification and illustration of thecritical path and its significance, types offloatsand slacksanditsimpactonbusiness, for better understanding of therecent trendsand applytheknowledge of it.	15%

Mapping of Course Outcomes and Program Outcomes for the subject Industrial Management (HSMC 501)

Course		Program										
Outcomes		Outcomes										
	PO	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	1											
CO1		✓		✓								
CO2		√		√								
CO3		√					√				·	

PaperCode (Name)	CO Number	Course Outcomes(CO)	ATTAINED
PEC-IT501B Introductionto Philosophicalthoughts	CO1	Identifytheevaluation ofthehistoryof philosophy.	10%
	CO2	Identifyreligious concepts,traditions, andhistoricalpractices overtimeand across cultures.	25%
	CO3	Analyzecourse-related materialtoevaluatethe historicaldevelopment ofcontemporaryissues.	15%

Mapping of Course Outcomes and Program Outcomes for the subject Philosophical thoughts (OEC-CS701B/C)

CourseO		ProgramOutcome										
utcomes		S										
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1		✓										
CO2		√										
CO3		√		√								

PaperCode (Name)	CO Number	Course	ATTAINED
		Outcomes(CO)	

PEC-CS701B		Understand	15%
CloudComputing	CO1	thefundamentalprincipl	
		esofdistributedcomputi	
		ng.	
		T T 1 . 1	2004
	CO2	Understand	20%
	CO2	theimportanc eof	
		virtualizationin	
		distributedcomputing	
		andhowthishasenabled	
		thedevelopmentofClou	
		d	
		Computing	1.50/
	GOA	11-4611-6	15%
	CO3	Identifyanddefine	
		technicalchallengesfor cloudapplicationsand	
		assesstheirimportance.	
		assessmen importance.	

Mapping of Course Outcomes and Program Outcomes for the subject Cloud Computing (PEC-CS701B)

CourseO	ProgramOutcome											
utcomes		S										
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1							✓					
CO2							√					
CO3		√										

Course Details:

Course Name:	CyberSecurity
Course Code:	PEC-CS 702E
Name of the Program:	B.Tech
Department	Computer Science Engineering

PaperCode (Name)	CO Number	Course Outcomes(CO)	ATTAINED
PEC-CS702E CyberSecurity	CO1	Recognize andanalyzesoftware vulnerabilitiesandsecu ritysolutions toreduce the risk ofexploitation.	25%
	CO2	Design operational andstrategic cyber securitystrategies and policies.	25%
	CO3	Implement cyber securitysolutionsanduse of cybersecurity, inform ationassurance, and cyber/computer for ensics software/tools.	10%

Mapping of Course Outcomes and Program Outcomes for the subject Cyber Security (PEC-CS702E)

CourseO	ProgramOutcome											
utcomes		S										
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1		√		√								✓
CO2			√	√								
CO3				√								

Paper Code(Name	CO Number	CourseOutcomes(CO)	ATTAINED
	CO1	Analyzetheconceptofinnovationandent repreneurship,contributionsofentrepre neursto thesociety,risk-opportunities perspective by applyingtheknowledgeoffactorsaffecting them.	10%

HSMC701,Project ManagementandEn trepreneurship	CO2	Analyzetheproject management,issuesandproblems in projectmanagement,projectlife cycle- initiation/conceptualization phase, determination of project feasibility studies will bedone tothe studentsfortheirproper understandingofsocialcostbenefitan alysis.	15%
	CO3	Identify and recognize the critical pathand its significance, types of floats andslacks and its impact on business, forbetterunderstanding oftherecent trends and applythe knowledgeofit.	25%

 $Mapping of Course Outcomes and Program Outcomes for the subject Project Management\ and\ Entrepreneurs hip (HSMC701)$

CourseO	ProgramOutcome											
utcomes		S										
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1		√		√								
CO2		✓		√								
CO3		√										✓

Course Name:	Design and Analysis of Algorithms
Course Code:	PCC-CS404
Name of the Program:	B.Tech
Department	Computer Science Engineering
Semester	4 th Semester

COURSE OUTCOME:

On successful completion of this course, students should be able to:

CO1	To analyze and identify the Complexity of a problem and compute the recurrence relation.
CO2	To analyze the several algorithms design techniques on some certain problems using divide & conquer method, dynamic programming approach and backtracking, greedy method.
CO3	To understand lower bound theory, graph traversal algorithm, network flow, disjoint set manipulation different method.
CO4	To design the algorithm of string matching problem, matrix manipulation algorithm.
CO5	To understand amortize analysis, approximation algorithm, notion of NP-completeness.

COAttain ment of Subjects

		CO	Attainment
	CO1	To analyze and identify the	100/
		Complexity of a problem and compute the recurrence relation.	10%
Design and Analysis of	CO2	To analyze the several algorithms	
Algorithms		design techniques on some	15%
(PCC-CS404)		certain problems using divide &	
		conquer method, dynamic programming approach and	
		backtracking, greedy method.	
	CO3	To understand lower bound	
		theory, graph traversal algorithm,	5%
		network flow, disjoint set manipulation different method.	
	CO4	To design the algorithm of string matching problem, matrix manipulation algorithm.	15%
	CO5	To understand amortize analysis, approximation algorithm, notion of NP-completeness.	15%

CO-PO Mapping:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1		V										
CO2		V	$\sqrt{}$	1						V		
CO3					$\sqrt{}$		$\sqrt{}$					
CO4			V	V						$\sqrt{}$		
CO5					V		V					

Course Details

Course Name:	Design and Analysis of Algorithm Lab
Course Code:	PCC-CS494
Name of the Program:	B.Tech
Department	Computer Science Engineering
Semester	4 th Semester

COURSE OUTCOME:

On successful completion of this course, students should be able to:

CO1	Design algorithm and implement C program using divide and conquer approach in Computer Science and Engineering and related fields.
CO2	Design algorithm and implement C program using dynamic programming in Computer Science and Engineering and related fields.
CO3	Design algorithm and implement C program using branch and bound method in Computer Science and Engineering and related fields.
CO4	Design algorithm and implement C program using backtracking in Computer Science and Engineering and related fields.
CO5	Design algorithm and implement C program using greedy method in Computer Science and Engineering and related fields.
CO6	Design Graph Traversal Algorithm and implement C program in Computer Science and Engineering and related fields.

		CO	Attainment
	CO1	Design algorithm and implement C program using divide and conquer approach in Computer Science and Engineering and related fields.	15%
Design and Analysis of Algorithm Lab (PCC-CS494)	CO2	Design algorithm and implement C program using dynamic programming in Computer Science and Engineering and related fields.	5%
	СОЗ	Design algorithm and implement C program using branch and bound method in Computer Science and Engineering and related fields. App	5%
	CO4	Design algorithm and implement C program using backtracking in Computer Science and Engineering and related fields.	15%
	CO5	Design algorithm and implement C program using greedy method	10%

	in Computer Science and Engineering and related fields.	
CO6	Design Graph Traversal Algorithm and implement C program in Computer Science and Engineering and related fields.	15%

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1				$\sqrt{}$						V		
CO2				$\sqrt{}$						$\sqrt{}$		
CO3										$\sqrt{}$		
CO4				$\sqrt{}$						$\sqrt{}$		
CO5			$\sqrt{}$	V						1		

Course Name:	Computer Architecture
Course Code:	PCC-CS402
Name of the Program:	B.Tech
Department	Computer Science Engineering
Semester	4 th Semester

COURSE OUTCOME:

On successful completion of this course, students should be able to:

CO1	Design pipelining concepts with a prior knowledge of stored program methods
CO2	Design about memory hierarchy and mapping techniques
CO3	Understand parallel architecture and interconnection network

		CO	Attainment
	CO1	Design pipelining concepts with a prior knowledge of stored program methods	10%
Computer Architecture (PCC- CS402)	CO2	Design about memory hierarchy and mapping techniques	25%
C5402)	CO3	Understand parallel architecture and interconnection network	25%

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1			V	V								
CO2			V	V								
CO3					V		$\sqrt{}$					

Course Details

Course Name:	Computer Architecture Lab
Course Code:	PCC-CS492
Name of the Program:	B.Tech
Department	Computer Science Engineering
Semester	4 th Semester

COURSE OUTCOME:

On successful completion of this course, students should be able to:

CO1	Design pipelining concepts with a prior knowledge of stored program methods
CO2	Design about memory hierarchy and mapping techniques
CO3	Understand of parallel architecture and interconnection network

CO Attainment

		CO	Attainment
Computer Architecture Lab (PCC-CS492)	CO1	Design pipelining concepts with a prior knowledge of stored program methods	10%
	CO2	Design about memory hierarchy and mapping techniques	25%
	CO3	Understand of parallel architecture and interconnection network	25%

CO-PO Mapping:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1				$\sqrt{}$						$\sqrt{}$		
CO2				V						V		
CO3					V		V					

Course Details

Course Name:	Formal Language & Automata
Course Code:	PCC-CS403
Name of the Program:	B.Tech
Department	Computer Science Engineering
Semester	4 th Semester

COURSE OUTCOME:

On successful completion of this course, students should be able to:

CO1	Formulate a formal notation for strings, languages and machines.
CO2	Design finite automata to accept a set of strings of a language
CO3	For a given language understand whether the given language is regular or not.
CO4	Design context free grammars to generate strings of context free language.
CO5	Understand equivalence of languages accepted by Push Down Automata and languages generated by context free grammars
CO6	Analyze the hierarchy of formal languages, grammars and machines.
CO7	Recognize between computability and non-computability and Decidability and undecidability.

		CO	Attainment
Formal Language & Automata PCC-	CO1	Formulate a formal notation for strings, languages and machines.	10%
CS403)	CO2	Design finite automata to accept a set of strings of a language	15%
	CO3	For a given language understand whether the given language is regular or not.	5%
	CO4	Design context free grammars to generate strings of context free language.	5%
	CO5	Understand equivalence of languages accepted by Push Down Automata and languages generated by context free grammars	10%
	CO6	Analyze the hierarchy of formal languages, grammars and machines.	10%
	CO7	Recognize between computability and non-computability and Decidability and undecidability.	5%

CourseOut comes		ProgramOutcomes										
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1		√										
CO2			✓	√						✓		
CO3					✓		√					
CO4			✓	✓						√		
CO5					✓		✓					
CO6		✓										
CO7												✓

Course Details

Course Name:	DBMS
Course Code:	PCC-CS601
Name of the Program:	B.Tech
Department	Computer Science Engineering
Semester	6 th Semester

Course Outcome

On completion of the course students will be able to

- 1. Analyze a given query using relational algebra expressions and SQL for that query and optimize the developed expressions.
- 2. Design a given specification of the requirement design the databases using E R method and normalization.
- 3. Formulate a given transaction-processing system, determine the transaction atomicity, consistency, isolation, and durability.
- 4. Implement the isolation property, including locking, time stamping based on concurrency control and Serializability of scheduling.

		CO	Attainment
DBMS	CO1	Analyze a given query using relational algebra expressions and SQL for that query and optimize the developed expressions.	20%
	CO2	Design a given specification of the requirement design the databases using E R method and normalization.	10%
	CO3	Formulate a given transaction- processing system, determine the transaction atomicity, consistency, isolation, and durability.	15%
	CO4	Implement the isolation property,	

including locking, time stamping	14%
based on concurrency control and	
Serializability of scheduling.	

CO – PO Mapping

CourseOut comes		ProgramOutcomes										
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1		√										
CO2			✓	✓						✓		
CO3		✓										
CO4				√								

Course Details

Course Name:	DBMS LAB
Course Code:	PCC-CS691
Name of the Program:	B.Tech
Department	Computer Science Engineering
Semester	6 th Semester

COURSE OUTCOMES

- 1 Infer database language commands to create simple database.
- 2 Analyse the database using queries to retrieve records.
- 3 Applying PL/SQL for processing database.
- 4 Develop solutions using database concepts for real time requirements.

		СО	Attainment
	CO1	Understand HTML and Infer database language commands to create simple database.	10%
DBMS LAB	CO2	Analyze the database using queries to retrieve records.	20%
	CO3	Applying PL/SQL for processing database.	15%
	CO4	Develop solutions using database concepts for real time requirements.	20%

CO - PO Mapping

CourseOut comes	ProgramOutcomes											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1					√		√					
CO2		✓								✓		
CO3	√				√	√					✓	
CO4							√					

Course Details:

Course Name:	Computer Networks
Course Code:	PCC-CS602
Name of the Program:	B.Tech
Department	Computer Science Engineering
Semester	6 th Semester

COURSE OUTCOME:

On successful completion of this course, students should be able to:

CO1	To develop an understanding of modern network s from a design and performance perspective.
CO2	To introduce the student to the major concepts involved in wide-area networks (WANs), local area networks (LANs) and Wireless LANs (WLANs)
CO3	To provide an opportunity to do network programming
CO4	To provide a WLAN measurement ideas.

		СО	Attainment
	CO1	To develop an understanding of	
Computer Networks		modern network s from a design	10%
(PCC-CS602)		and performance perspective.	
	CO2	To introduce the student to the	
		major concepts involved in wide-	
		area networks (WANs), local area	20%
		networks (LANs) and Wireless	
		LANs (WLANs)	
	CO3	To provide an opportunity to do	
		network programming	15%
	CO4	To provide a WLAN	
		measurement ideas.	10%

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1					V							
CO2					V							
CO3					V							
CO4				V	V							

Course Details:

Course Name:	
	ComputerNetworksLab
Course Code:	PCC-CS692
Name of the Program:	B.Tech
Department	Computer Science Engineering
Semester	6 th Semester

COURSEOUTCOMES

After completion of course, students would be able to:

- $1. \quad Identify and use various networking components.\\$
- $2. \quad Analyze performance of various communication protocols.$
- ${\it 3.} \quad Understand the transport layer concepts and protocoldesign including connection oriented and connection-less models.$
- 4. Implementdevicesharingonnetwork.

COAttain ment of Subjects

Paper Code(Na me)	CO Number	Course Outcomes(C O)	ATTAINED
	COI	Identify and understand of Various networking components.	10%
ComputerNet works Lab Code:PCC-	CO2	Analyze the performance of Various communication protocols.	15%
CS692	CO3	Understand the transport Layer concepts and Protocol design including Connection oriented and Connectionless models.	10%
	CO4	Implement device sharing On network.	20%

Mapping of Course Outcomes and Program Outcomes for the subject Computer Network Lab (PCC-CS 692)

Course Outcomes		Program Outcomes										
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1		1					1					
CO2		1		1								
CO3							1					
CO4				1								

perCode (Name)	CO Number	Course Outcomes(CO)	ATTAINED
PROJ-CS601 Research Methodology	COI	Identifyanddiscusstheissues andconcepts salienttotheresearch process.	15%
	CO2	Analysisofcomplex issuesinherentin selectingaresearch problem, selectingan appropriateresearch design, and implementing aresearchproject.	20%
	CO3	Understand,compre hendand explainresearch articlesintheir academicdiscipline.	15%

CourseOut comes		ProgramOutcomes										
Comes	PO1	1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12										
	101		100	10.	100	100	107	100	10)	1010	1011	1012
CO1		✓										
CO2		√		√								
CO3							√					

COAttainment

		<u>CO</u>	<u>Attainment</u>		
	<u>CO1</u>	Design algorithm and implement C program using divide and conquer approach in Computer Science and Engineering and related fields.	15%		
Design and Analysis of Algorithm Lab (PCC-CS494)	<u>CO2</u>	Design algorithm and implement C program using dynamic programming in Computer Science and Engineering and related fields.	15%		
	<u>CO3</u>	Design algorithm and implement C program using branch and bound method in Computer Science and Engineering and related fields. App	5%		
	<u>CO4</u>	Design algorithm and implement C program using backtracking in Computer Science and Engineering and related fields.	5%		
	<u>CO5</u>	Design algorithm and implement C program using greedy method in Computer Science and Engineering and related fields.	10%		
	<u>CO6</u>	Design Graph Traversal Algorithm and implement C program in Computer Science and Engineering and related fields.	15%		

CO-PO Mapping:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1			$\sqrt{}$	$\sqrt{}$						V		
CO2			$\sqrt{}$	$\sqrt{}$						V		
CO3			$\sqrt{}$	$\sqrt{}$						V		
CO4				$\sqrt{}$						V		
CO5										V		

Course Name:	Image Processing
Course Code:	PEC-IT601D
Name of the Program:	B.Tech
Department	Computer Science Engineering

Semester	6 th Semester
Name of Faculty	Suman Halder

COURSE OUTCOME:

On successful completion of this course, students should be able to:

CO1	Review the fundamental concepts of a digital image processing system.
CO2	Analyze images in the spatial and frequency domain using various transforms.
CO3	Evaluate the techniques for image enhancement and image restoration.
CO4	Interpret image segmentation and representation techniques.

CO-PO Mapping:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1			$\sqrt{}$		$\sqrt{}$							
CO2	$\sqrt{}$	V			V							
CO3				V	V							
CO4				V	V							

Course Details

Course Name:	Pattern Recognition
Course Code:	PEC-IT602D
Name of the Program:	B.Tech
Department	Computer Science Engineering
Semester	6 th Semester
Name of Faculty	SD

COURSE OUTCOME:

On successful completion of this course, students should be able to:

CO1	Understand and compare a variety of pattern classification, structural pattern recognition and pattern classifier combination techniques.
CO2	Summarize, analyze, and relate research in the pattern recognition area verbally and in writing.
CO3	Apply performance evaluation methods for pattern and critique comparisons of techniques made in the research literature.
CO4	Apply pattern recognition techniques to real-world problems such as document analysis and recognition.
CO5	Implement simple pattern classifiers, classifier combinations and structural pattern recognizers.
CO6	Able to manipulate Bayes' Classifier and implement Decision Trees.

CO-PO Mapping:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1					V							
CO2												
CO3					V						$\sqrt{}$	
CO4					V						$\sqrt{}$	
CO5												

COAttain ment of Subjects

		<u>CO</u>	<u>Attainment</u>
	<u>CO1</u>	Understand and compare a variety of pattern classification, structural pattern recognition and pattern classifier combination techniques.	15%
	<u>CO2</u>	Summarize, analyze, and relate research in the pattern recognition area verbally and in writing.	15%
	<u>CO3</u>	Apply performance evaluation methods for pattern and critique comparisons of techniques made in the research literature.	5%
Pattern Recognition PEC-IT602D	<u>CO4</u>	Apply pattern recognition techniques to real-world problems such as document analysis and recognition.	15%
	<u>CO5</u>	Implement simple pattern classifiers, classifier combinations and structural pattern recognizers.	10%
	<u>CO6</u>	Able to manipulate Bayes' Classifier and implement Decision Trees.	5%

CO Attainment of Human Resource Development and Organizational Behavior(OEC-IT601B)

Paper CO Number		CourseOutcomes(CO)	ATTAINED
OEC-IT601B	CO1	Understand the organizational structures, the Features and principles of organization. Analysis of the theories of motivation ,and Applying the knowledge in the organizational Level and in different socio-environmental Legal situations.	15%

Human Resource Development and Organizational Behavior	CO2	Understand and recognize different leadership in different social situations. Analysis of concept of Group Dynamic be done to the Students for their proper understanding and to apply in real-life scenarios.	15%
	CO3	Recognize the factors of organizational Change and its impact on business, better Understanding of the business environment With respect to resistance to change and apply The knowledge of it in different problems.	25%

 $Mapping\ of\ CourseOutcomes\ and\ ProgramOutcomes for\ the subject Human Resource Development and Organizational Behavior (OEC-IT601B)$

CourseOut comes		ProgramO utcomes										
	PO1	D1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12										
CO1		✓		✓			✓					
CO2		✓		✓			✓					
CO3							√					✓

Cryptography & Network Security (CS801D)

Course Outcomes:

CO1: To be able to identify common network security vulnerabilities/attacks; explain the foundations of Cryptography and network security.

CO2: To be able to analyze the risks and threats to networked computers.

CO3: To be able to demonstrate detailed knowledge of the role of encryption to protect data.

CO4: To be able to analyze security issues arising from the use of certain types of technologies.

CO5: To be able to identify the appropriate procedures required to secure networks, system security testing and procedures of Backup and Recovery.

Paper Code(Name)	CO Number	CourseOutcomes(CO)	ATTAINED
	CO1	To be able to identify common network security vulnerabilities/attacks; explain the foundations of Cryptography and network security.	25%
OEC-IT601B HumanResource Developmentand OrganizationalBe havior	CO2	To be able to analyze the risks and threats to networked computers.	25%
	CO3	To be able to demonstrate detailed knowledge of the role of encryption to protect data.	20%

CO-PO Mapping:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1												
CO2				V								
CO3						V	V					

CO4							

Course Details:

Course Name:	E-Commerce & ERP
Course Code:	OEC-CS802A
Name of the Program:	B.Tech
Department	Computer Science Engineering
Semester	8 th Semester
Name of Faculty	SD

COURSE OUTCOME:

On successful completion of this course, students should be able to:

CO1	To identify and differentiate various types of Ecommerce.							
CO2	To define and understand E-business and its Models.							
CO3	To apply appropriate techniques and resources of Hardware and Software Technologies for							
	Ecommerce.							
CO4	To understand the basic concepts of ERP and identify different technologies used in ERP.							
CO5	To apply different tools used in ER.							

COAttainment

		<u>CO</u>	<u>Attainment</u>
	<u>CO1</u>	To identify and differentiate	10%
		various types of Ecommerce.	
	<u>CO2</u>	To define and understand E-	15%
E-Commerce & ERP		business and its Models.	
OEC-CS802A	<u>CO3</u>	To apply appropriate techniques	10%
		and resources of Hardware and	
		Software Technologies for	
		Ecommerce.	
	<u>CO4</u>	To understand the basic concepts	10%
		of ERP and identify different	
		technologies used in ERP.	
	<u>CO5</u>	To apply different tools used in	15%
		ER.	

CO-PO Mapping:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1				V								
CO2					√		$\sqrt{}$					
CO3					$\sqrt{}$	$\sqrt{}$					$\sqrt{}$	
CO4					V		V					
CO5					$\sqrt{}$	$\sqrt{}$					$\sqrt{}$	

PaperCode (Name)	CO Number	Course Outcomes(CO)	ATTAINED
OEC-CS801E,	CO1	Understand the importance of Behavioral aspects in the workplace	10%
Soft Skill &Interpersonal Communication	CO2	Recognize the conflict resolution skills at work	17%
	CO3	Understand the importance of Communication skills in daily life And at work	25%

Mapping of Course Outcomes and Program Outcomes for the subject Soft Skill & Interpersonal Communication (OEC-CS801E)

Course Outcomes							Program Outcome					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1							✓					
CO2												✓
CO3							√					

PAPER NAME	CO No.	Course Outcomes	Attainment
BIOLOGY (BSC-401)	CO1	Describe how biological observations of 18th century lead to major discoveries and understand that the classification of organisms is based on morphological, biochemical or ecological	10%

	parameters.	
CO2	Highlight the concepts of excessiveness and dominance during the passage of genetic material from parent to	24%
CO3	offspring. Convey that all forms of life have the same building blocks and yet the manifestations are diverse.	5%
CO4	Classify enzymes and distinguish between different mechanisms of enzyme action and identify DNA as a genetic material in the molecular basis of information transfer.	10%
CO5	Analyze biological processes at the reductionist level and apply thermodynamic principals to the biological systems.	10%

Mapping of Course Outcomes and Program Outcomes for the subject $BIOLOGY\ (BSC-401)$

Course Outcomes		Program Outcomes										
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1					✓		√					
CO2				✓			✓					✓
CO3		✓										✓
CO4												✓
CO4		✓										

PO NO.	BROAD	ELABORATE
1	Engineering	
	knowledge	engineering fundan
2	Problem	Identify, formulate, research literature, and analyse complex
	analysis:	engineering problems reaching substantiated conclusions usi
3	Daniero/dayal	Decision colutions for complex engineering problems and deci-
3	Design/devel opment of	Design solutions for complex engineering problems and designable bealth and safety, and cultural, societal, and environments
4	Conduct	Use research-based knowledge and research methods include
-		interpretation of data, and synthesis of the information to prov
	s of complex	interpretation of data, and synthesis of the information to prov
5		Create, select, and apply appropriate techniques, resources,
	usage:	activities, with an understanding of the limitations.
6	The engineer	Apply reasoning informed by the contextual knowledge to ass
	and society:	the professional engineering practice.
7		Understand the impact of the professional engineering solutio
	and	development.
	sustainabilit	
8	Ethics:	Apply ethical principles and commit to professional ethics and
9	Individual	Function effectively as an individual, and as a member or lea
	and team	
	work:	
10	Communicat	Communicate effectively on complex engineering activities wi
	ion:	write effective reports and design documentation, make effect
11	Project	Demonstrate knowledge and understanding of t h e engineer
11		to manage projects and in multidisciplinary environments
12	Life-long	Recognise the need for, and have the preparation and ability
	learning:	. teeegee and need for, and have the proparation and ability
	ioai i i i i i i i i i i i i i i i i i i	

PROGRAM SPECIFIC OUTCOMES

PSO1: Ability to apply the knowledge of Basic Computing, Basic Sciences and Social Sciences in the field of electrical engineering to identify, analyze and so life problems faced in industries and/or during research work.

PSO2: Ability to model, test, analyze and design components or processes rel modern power system involving both conventional and renewable energy resolvoltage systems and energy management.

PSO3: Ability to apply the concept of circuit theory, electromagnetic field thec and basic electronics to solve complex problems of electrical machines and dripower electronic converters and electrical system design.

PSO4: Ability to identify and analyze the role of measurement, instrumentatic modern control engineering to enhance sustainability, reliability and efficiency electrical systems.

PSO5: Ability to demonstrate proficiency in operating and handling modern er tools to cop up with dynamic industrial environment.

PSO6: Ability to work and communicate effectively in the corporate life keepir responsible outlook towards socio-economic and environmental issues.

JRSE OUTCOMES

Name

CO6	design filter circuits.
CO5	estimate parameters of two-port networks.
CO4	select suitable techniques of network analysis for efficient solution.
CO3	apply network theorems and different tools to solve network problems.
CO2	explain different network theorems, coupled circuit and tools for solution
CO1	describe different type of networks, sources and signals with examples.

Naı

CO1	1. describe analog electronic components and analog electronics circuits
CO2	2. explain principle of operation of analog electronic components, filters, I
CO3	3. compute parameters and operating points of analog electronic circuits.
CO4	4. determine response of analog electronic circuits.
CO5	5. distinguish different types amplifier and different types oscillators base
CO6	6. construct operational amplifier based circuits for different applications.

Name of

CO1	1. Relate different coordinate systems for efficient solution of electromagi
CO2	2. describe mathematical s tools to solve electromagnetic problems.
CO3	3. explain laws applied to electromagnetic field.
CO4	4. apply mathematical tools and laws to solve electromagnetic problems.
CO5	5. analyze electromagnetic wave propagation
CO6	6. estimate transmission line parameters

Nam

Course	After completing this course, the students will be able to:
CO1	explain the co-ordinate system, principle of three dimensional rotation, kir
CO2	elaborate the theory of general motion, bending moment, torsional motio
CO3	develop free body diagram of different arrangements.

CO4	solve problems with the application of theories and principle of motion , f
CO5	analyze torsional motion and bending moment.
CO1	explain basics of probability theories, rules, distribution and properties of
CO2	describe different methods of numerical analysis.
CO3	solve numerical problems based on probability theories , numerical analy
CO4	apply numerical methods to solve engineering problems.
CO5	5. solve engineering problems using z transform and probability theory.
	Nan
Course	Upon completion of this course, students will be able to:
CO1	Describe with examples the biological observations lead to major discover
CO2	Explain the classification of kingdom of life the building blocks of life
CO3	Different techniques of bio physics used to study biological phenomena.
CO4	The role of imaging in the screening, diagnosis, staging, and treatments
CO5	Identify DNA as a genetic material in the molecular basis of information
CO6	Analyze biological processes at the reductionistic level.
CO7	Apply thermodynamic principles to biological systems.
CO8	Identify microorganisms
	Na
Course	After completing this course, the students will be able to:
CO1	Describe different features of Indian constitution. Power and functioning of
CO2	Identify authority to redress a problem in the profession and in the socie
	Nama
	Name o
_	
Course	Up
CO1	Determine transient response of different electrical circuit, frequency res
CO2	Generate different signals in both discrete and analog form
CO3 CO4	Analyze amplitude and phase spectrum of different signals.
CO5	Verify network theorems.
CO5	Construct circuits with appropriate instruments and safety precautions.
CUS	Simulate electrical circuit experiments using suitable software.
	Name
C 2	
Course	Up

Course	Up
	At
CO1	Determine characteristics of full wave rectifier with filter and without filte
CO2	Verify function of DAC and ADC
CO3	Construct function generator using IC, R-C coupled amplifier, linear voltage

CO4	Work in a team
CO5	Validate theoretical learning with practical Special Remarks: The above-m
	Name

Course	Upon successful completion of the course, student will have:
CO1	Solve problems with Newton forward /backward, Lagrange's interpolation
CO2	problems of numerical integration using Trapezoidal rule, Simpson's 1/3
CO3	rule, Weddle's rule problems to find numerical solution of a system of line
CO4	Gauss elimination and Gauss-Seidel iterations. problems to find numerical
CO5	Ordinary differential equation by Euler's and Runga-Kutta methods.
CO6	Find appropriate numerical methods to solve engineering problems.
CO7	Use software package to solve numerical problems.

Na

Course	Up
CO1	Describe the function of different components of magnetic circuit, DC mag
CO2	Explain the principle of operation of different types of DC machines and tr
CO3	Solve numerical problems of DC machines and transformers.
CO4	Estimate the parameters and efficiency of transformer.
CO5	Determine the characteristics of DC machines
CO6	recommend methods to control output of DC machines.

Nan

Course	Up
CO1	Describe the function of different building blocks of digital electronics, ser
CO2	Explain the principle of operation of combinational and sequential digital of
CO3	Solve numerical problems of Boolean algebra, number system, combinati
CO4	Specify applications of combinational and sequential digital circuits.
CO5	Determine specifications of different digital circuits.
CO6	Design combinational and sequential digital circuits

Name of the S

Course	Up
CO1	Explain the terms accuracy, precision, resolution, speed of response, erro
CO2	Describe methods of measurement of power, energy by instruments and
CO3	Explain the principle of operation of analog meters, instrument transform
CO4	Explain the different building block, principle of operation of oscilloscope a
CO5	Solve numerical problems related to analog meters, instrument transform
CO6	Specify applications of analog and digital measuring instruments, sensors
	Name or
_	

Course	Upon successful completion of the course, student will have:

201	
CO1	Describe the function of different components of boilers. Engines and turk
CO2	Explain the principle of operation of different types of boilers, turbines, IC
CO3	Solve numerical problems of boilers, turbines, IC engines and Gas turbine
CO4	Analyze the performance of boilers, engines and turbines.
CO5	Determine efficiency of boilers, engines and turbines.
CO6	Explain methods to control boiler, engines and turbines parameters.
	Name of t
	Name of t
Course	Upon successful completion of the course, student will have:
Course CO1	
	Upon successful completion of the course, student will have:
CO1	Upon successful completion of the course, student will have: 1. Illustrate different aspects of human values, ethics, engineers' respons
CO1 CO2	Upon successful completion of the course, student will have: 1. Illustrate different aspects of human values, ethics, engineers' respons 2. Explain different principles, different theories and laws of engineering e
CO1 CO2 CO3	Upon successful completion of the course, student will have: 1. Illustrate different aspects of human values, ethics, engineers' respons 2. Explain different principles, different theories and laws of engineering e 3. Identify different factors in the light of Engineers' responsibility toward

Course	Upon successful completion of the course, student will have:
CO1	Understand the natural environment and its relationships with human ac
CO2	Apply the fundamental knowledge of science and engineering to assess ϵ
CO3	Develop guidelines and procedures for health and safety issues obeying the
CO4	Acquire skills for scientific problem-solving related to air, water, noise& la
	Name of t

Course	Upon successful completion of the course, student will have:
CO1	Identify appropriate equipment and instruments for the experiment.
CO2	Test the instrument for application to the experiment.
CO3	Construct circuits with appropriate instruments and safety precautions
CO4	Validate different characteristics of DC machine, methods of speed contr
CO5	Work effectively in a team

Name of t

Upon successful completion of the course, student will have:
Identify appropriate equipment and instruments for the experiment
2. Test the instruments for application to the experiment
3. Construct decoder, multiplexer, adder and subtractor circuits with app
4. Realize RS-JK and D flip flop, universal register with gates, multiplexer
5. Validate the operation of code conversion circuit –BCD to Excess 3 & v
Work effectively in a team

Name of the Subject

Course	Upon successful completion of the course, student will have:
	1. identify appropriate equipment and instruments for the experiment

2. test the instrument for application to the experiment
3. construct circuits with appropriate instruments and safety precautions
4. evaluate and adjust the precision and accuracy of AC energy meter, m
5. measure voltage, current, power, energy, phase, frequency, resistance
6. work effectively in a team

Name of the 5

Upon successful completion of the course, student will have:
Identify appropriate equipment and instruments for the experiment
Construct experimental setup with appropriate instruments and safety pr
Identify different parts of Lanchashire Boiler, Bahcock & Willcox Boiler, Co
Test 4 stroke petrol engine by electrical load box and diesel engine by ele
Find calorific value, flash point, fire point, cloud point, pour point of fuel.
Work effectively in a team

Name of t

Course	On successful completion of the course the student will be able to:
	1. To understand the arrangement of windings of AC machines.
	2. To understand the principle of production of pulsating and revolving m
	3. To understand the principle of operation and characteristics of three pl
	4. To understand the principle of operation and characteristics of single p
	5. To understand the principle of operation and characteristics of synchro
	6. To understand the principle of operation and characteristics of special
	7. To solve problems of Induction machines, synchronous machines and s

Course After completion of this course the students will be able to:

To understand the basic principle of generation of Electricity from differer

To find parameters and characteristics of overhead transmission lines and

To find different parameters for the construction of overhead transmission

To determine the performance of transmission lines.

To understand the principle tariff calculation.

To solve numerical problems on the topics studied.

Course	On completion of this course a student will be in a position to:		
CO1	1. To find mathematical representation of LTI systems.		
CO2	2. To find time response of LTI systems of different orders		
CO3	3. To find the frequency response of LTI systems of different orders		
CO4	4. To understand stabilityof differentLTI systems.		
CO5	5. To analyze LTIsystems with state variables.		
CO6	6. To solve problems of mathematical modelling and stability of LTI syste		

Course	On completion of this course a students will be able to
CO1	To understand the functioning and characteristics of power switching dev
CO2	To understand the principle of operation of converters.
CO3	To understand different triggering circuits and techniques of commutation
CO4	To find external performance parameter of converters.
CO5	To analyze methods of voltage control, improvement of power factor and
CO6	To solve numerical problems of converters

Name of

Course	After completion of the course, the students will be able to:
CO1	identify appropriate equipment and instruments for the experiment.
CO2	test the instrument for application to the experiment.
CO3	construct circuits with appropriate instruments and safety precautions.
CO4	validate different characteristics of single phase Induction motor, three pl
CO5	work effectively in a team

Name (

Course	On completion of this course a students will be able to
CO1	identify appropriate equipment and instruments for the experiment.
CO2	test the instrument for application to the experiment.
CO3	3. construct circuits with appropriate instruments and safety precautions.
CO4	4. validate different characteristics of transmission line.
CO5	5. determine earth resistance, dielectric strength of insulating oil, breakd
CO6	6. analyze an electrical transmission line circuit with the help of software
CO7	7. work effectively in a team
CO4 CO5 CO6	4. validate different characteristics of transmission line.5. determine earth resistance, dielectric strength of insulating oil, bre6. analyze an electrical transmission line circuit with the help of softw

Name c

After completion of this course the students will be able to
identify appropriate equipment and instruments for the experiment.
test the instrument for application to the experiment.
construct circuits with appropriate instruments and safety precautions.
use MAT-Lab control system tool box, MAT-Lab- simulink tool box & PSP
5. determinecontrol system specifications of first and second order syster

Name of

Course	On completion of this course a students will be able to
CO1	identify appropriate equipment and instruments for the experiment.
CO2	test the instrument for application to the experiment.
CO3	construct circuits with appropriate instruments and safety precautions

Name o

Course	On completion of this course a student will be in a position to:
CO1	differentiate how the choices of data structure & algorithm methods enha
CO2	solve problems based upon different data structure & also write programs
CO3	write programs based on different data structure
CO4	identify appropriate data structure & algorithmic methods in solving probl
CO5	discuss the computational efficiency of the principal algorithms for sorting
CO6	comparethe benefits of dynamic and static data structures implementatio
	Name of

Name of

v	ea	۳.	3rd	
	Ca		JIU	

Course	After completion of this course the students will be able to		
CO1	specify simple abstract data types.		
CO2	recognise features of object-oriented design such as encapsulation, polyn		
CO3	inheritance, and composition of systems based on object identity.		
CO4	apply common object-oriented design patterns		
CO5	specify uses of common object oriented design patterns with examples.		
CO6	design applications with an event-driven graphical user interface.		

Course	After completion of the course, the students will be able to:
Course	Arter completion of the course, the students will be able to.
CO1	Represent power system components in line diagrams.
CO2	Determine the location of distribution substation.
CO3	Determine the performance of power system with the help of load flowv s
CO4	Analyse faults in Electrical systems.
CO5	Determine the stabilty of Power system.
CO6	Explain principle of operation of different power system protection equipn
CO7	Solve numerical problems related to representation, load flow, faults, stal
	Name of the

Name of the

Year: 3 rd	
Course	After completion of the course, the students will be able to
CO1	1. explain the architecture of 8086 and 8051.
CO2	2. do assembly language programming of 8086, 8051
CO3	3. interface different peripheral with 8086 and 8051
CO4	4. develop micro processor/ microcontroller based systems.
CO5	5. compare microprocessor, microcontroller, PIC and ARM processors
	A.I

Name

Course	On completion of this course a students will be able to
CO1	explain the principle of sampling and reconstrction of analog signal. syst
CO2	perform Z-transformation and inverse Z-tranaformation of systems.
CO3	analyse and design digital control
CO4	design compensators for digital control system to achieve desired specifi

CO5	represent digital control systems using state space models.
CO6	analyze the effect sampling on stability, controllability and observability
	Na

CO1 choose intelligently AC and DC transmission systems for the dedicated at identify the suitable two-level/multilevel configuration for high power cor select the suitable protection method for various converter faults.

CO4 4. identify suitable reactive power compensation method.

CO5 5. decide the configuration for harmonic mitigation on both AC and DC sides of the configuration of the converters, power flow analysis, resident to converters, power flow analysis, resident to converters.

Name

Course	After completion of this course the students will be able to
CO1	specify the rating of electrical machines with standard specifications.
CO2	explain the principles of electrical machine design and carry out basic des
CO3	3. determine the various factors which influence the design of electrical, r
CO4	4. explain the construction and performance characteristics of electrical n
CO5	5. use software tools to do design calculations.

Name of

Course	On completion of this course a students will be able to
CO1	explain the principle of Electric traction.
CO2	choose a suitable drive scheme for developing an electric hybrid vehicle d
CO3	design and develop basic schemes of electric vehicles and hybrid electric
CO4	choose proper energy storage systems for vehicle applications
CO5	implement different energy management strategies for hybrid vehicle.

Nam₍

Course	analyse uncompensated AC transmission line.				
Outcomes	explain the working principles of FACTS devices and their operating chara				
	3. apply FACTS devices for power flow control and stabilty.				
	4. identify different issues of power quality in distribution system.				
	5. apply different compensation and control techniques for DSTATCOM6.				
Name of the	e Subject: INDUSTRIAL ELECTRICALSYSTEMS				
Subject Cod	le: PE-EE-602C				
Year: 3 rd					
Course	1. Represent electrical wiring system for residential, commercial and indu				
Outcomes	2. Determine the rating of components of residential and commercial elec				
	3. Design lighting scheme for a residential and commercial premises.				
	4. Select transformer, switchgear, protection equipments for industrial ele				
	5. explain methods of automation of Industrial Electrical Systems				
	6. Solve numerical problems related to earthing system, lighting scheme,				

Name of the Subject: DIGITAL SIGNALPROCESSING Subject Code: PE-EE-601A Year: 3rd Course 1. represent signals mathematically in continuous and discrete-time and i Outcomes 2. analyse discrete-time systems using z-transform. 3. explain the Discrete-Fourier Transform (DFT) and the FFT algorithms. 4. design digital filters for various applications. 5. apply digital signal processing for the analysis of real-life signals. Name of the Subject: COMMUNICATION ENGINEERING **Subject Code:** PE-EE-601B Year: 3rd Course 1. compare the performance of AM, FM and PM schemes with reference to Outcomes 2. explain noise as a random process and its effect on communication rec 3. evaluate the performance of ASK, FSK, PSK, BPSK, QPSK in a digital co 4. identify source coding and channel coding schemes for a given commu 5. analyze various digital modulation methods 6. compute band width requirement and probability of error in various dic Name of the Subject: VLSI AND MICROELECTRONICS Subject Code: PE-EE-603C Year: 3rd 1. explain the principle of design of VLSI circuits Course **Outcomes** 2. explain different MOS structure with characteristics 3. apply different processes for VLSI fabrication 4. use programming language for the design of logic circuits 5. draw the stick diagram and layout for simple MOS circuits Name of the Subject: ECONOMICS FOR ENGINEERS **Subject Code:** HM-EE-601 Year: 3rd Course 1. evaluate the economic theories, cost concepts and pricing policies **Outcomes** 2. explain the market structures and integration concepts 3. apply the concepts of financial management for project appraisal 4. explain accounting systems, the impact of inflation, taxation, deprecia 5. analyze financial statements using ratio analysis 6. explain financial planning, economic basis for replacement, project sch Name of the Subject: POWER SYSTEM-II LABORATORY **Subject Code:** PC-EE 691 Year: 3rd Course 1. Identify appropriate equipment and instruments for the experiment. 2. Test the instrument for application to the experiment. **Outcomes** 3. Construct circuits with appropriate instruments and safety precautions 4. Validate the characteristics of under voltage relay, over current relay, 5. Validate protection schemes of transformer, generator, motor and feed 7. work effectively in a team Name of the Subject: MICRO PROCESSOR AND MICRO CONTROLLERLABORATORY Subject Code: : PC-EE 692 Year: 3rd 1. identify appropriate equipment and instruments for the experiment Course

- **Outcomes** 2. test the instrument for application to the experiment
 - 3. construct circuits with appropriate instruments and safety precautions
 - 4. program 8086 for arithmatic operation, sorting of array, searching for
 - 5. interface ADC/DAC, 8255, 8251 to 8086 and LCD, keyboard to 8051
 - 6. program 8051 using arithmatic, logical and bit manipulation instruction
 - 7. work effectively in a team

Name of the Subject: ELECTRICAL AND ELECTRONICS DESIGNLABORATORY

Subject Code: PC-EE 681

Year: 3rd

Course Outcomes

- 1. explain basic concept of measurement, noise in electronic system, sens
- 2. implement PC based data acquisition systems
- 3. construct circuits with appropriate instruments and safety precautions
- 4. design heating elements, air core grounding reactor, power distribution
- 5. do wiring and installation design of a multistoried residential building w
- 6. design electronic hardware for controller of lift, speed of AC/DC motor,

Name of the Subject: ELECTRIC DRIVE

Subject Code: PC-EE 701

Year: 4[™]

Course **Outcomes**

- 1. Explain the principle of operation of Electric Drive.
- 2. Describe different methods of starting and braking of Electric Drive.
- 3. Model and control DC Drive
- 4. Control speed of Induction and Synchronous motors.
- 5. Recommend drives for different applications.
- 6. Estimate ratings, variables and parameters of Electric Drives.

Name of the Subject: CONTROL SYSTEM DESIGN

Subject Code: PE-EE 701 A

Year: 4[™]

Course **Outcomes**

- 1. explain the effect of gain, addition of pole and zeros on system's performance of the system's performance of t
- 2. describe time domain and frequency domain design specifications.
- 3. demonstrate the effect of nonlinearity on system performance.
- 4. design control system in time domain, in frequency domain and in sta
- 5. design PID controllers.
- 6. select appropriate method for design of control system.

Name of the Subject: ELECTRICAL ENERGY CONSERVATION& AUDITING

Subject Code: : PE-EE 701B

Year: 4[™]

Course **Outcomes**

- 1. explain the basic of energy resources, energy security, energy conserv
- 2. quantify the energy conservation opportunities in different thermal sys
- 3. quantify the energy conservation opportunities in different electrical sy
- 4. identify the common energy conservation opportunities in different ene
- 5. explain the methods of energy management and audit.
- 6. analyse and report the outcome of energy audit

Name of the Subject: POWER GENERATION ECONOMICS

Subject Code: : PE-EE 701C

Year: 4[™]

Course

1. explain the different terms e.g. load factor etc for economics of genera

2. apply different types of tariff for electricity pricing. Outcomes 3. optimize the operation of power system with unit commitment. 4. determine generation levels such that the total cost of generation beco 5. determine the state of the system given by the voltage magnitudes an 6. predict the power or energy needed to balance the supply and load del Name of the Subject: ARTIFICIAL INTELLIGENCE **Subject Code:** OE-EE-701A Year: 4[™] Course 1. explain the concept of knowledge representation and predicate logic ar **Outcomes** 2. describe state space and its searching strategies 3. demonstrate proficency in applying scientific method to models of mach 4. apply the machine learning concepts in real life problems 5. demonstrate an ability to share in discussions of AI, its current scope a Name of the Subject: INTERNET OF THINGS Subject Code: OE-EE-701B Year:4[™] 1. explain the definition and usage of the term "Internet of Things" in different terms of the term th Course Outcomes 2. explain the key components that make up an IoT system. 3. differentiate between the levels of the IoT stack and be familiar with t 4. build and test a IoT system involving prototyping, programming and date 5. apply cloud computing and data analytics in a typical IoT system Name of the Subject: COMPUTER GRAPHICS Subject Code: OE-EE-701C Year: 4[™] 1. explain Computer graphics and graphic systems. Course 2. test and implement line drawing algorithm, circle and ellipse drawing a Outcomes 3. Perform 2D and 3D transformation and viewing. 4. apply algorithms for visible surface determination. 5. explain colors and shading models and ray tracing. Name of the Subject: EMBEDDED SYSTEM Subject Code: OE-EE 702A Year: 4[™] 1. discuss the definition, purpose, application, classification, quality char-Course 2. explain the internal structure of the Embedded system. **Outcomes** 3. interface IO devices and other peripherals with micro controllers in Em 4. write programs for Micro controllers in Embedded systems. 5. apply the concept of Embedded firmware in design of Embedded system Name of the Subject: DIGITAL IMAGE PROCESSING Subject Code: OE-EE 702B Year: 4[™] Course 1. explain the fundamental concepts of a digital image processing system Outcomes 3. apply different image segmentation techniques. 4. categorize various compression techniques. 5. implement image process and analysis algorithms. 6. apply image processing algorithms in practical applications. Name of the Subject: COMPUTER NETWORK

Subject Code: : OE-EE 702C

Year: 4 TH	
Course	1. explain the concepts of data communication and networking.
Outcomes	2. identify the different types of network topologies and protocols.
	3. describe the function of a network system with OSI and TCP/IP model
	4. differentiate different types of routing protocol.
	5. apply principles of congestion control .
	6. implement different schemes for security of the networks.
Name of the	e Subject: PRINCIPLE OF MANAGEMEENT
	le: : HM-EE 701
Year: 4 [™]	
Course	1. explain the concepts and approaches of management.
Outcomes	2. demonstrate the roles, skills and functions of management.
	3. diagnose and solve organizational problems.
	4. identify the complexities associated with management of human resou
	5. apply different methods of Customer, Operation and Technology mana
	6. acquire skills of good leader in an organization.
Name of the	e Subject: ELECTRIC DRIVE LABORATORY
	le: PC-EE 791
Year: 4 [™]	
Course	1. identify appropriate equipment and instruments for the experiment.
Outcomes	2. test the instrument for application to the experiment.
	3. construct circuits with appropriate instruments and safety precautions
	4. apply different methods of control of Electric Drive in the laboratory.
	5. analyse experimental data obtained in the laboratory.
	6. work effectively in a team
Name of the	e Subject: UTILIZATION OF ELECTRIC POWER
	le: : PC-EE 801
Year: 4 [™]	
Course	1. explain the fundamentals of illumination and different lighting schemes
Outcomes	3. able to select appropriate lighting, heating and welding techniques for
	4. apply different electrolysis process for different applications.
	5. explain the principle of different aspect of Electric traction and control
Name of the	e Subject: LINE COMMUTATED AND ACTIVE PWM RECTIFIERS
	de: PE-EE 801A
Year: 4 TH	
Course	1. explain the principle of operation of different converters.
Outcomes	2. suggest the application of different filters.
	3. apply converters for different applications.
	4. analyze converter circuits.
	5. develop appropriate scheme for control of different converters.
	6. solve numerical problems relating to different converters.
Name of the	e Subject: POWER SYSTEM DYNAMICS AND CONTROL
	de: PE-EE 801B
Year: 4 TH	IC. FL-LL OUID
Course	1. explain the model of power system components
Outcomes	2. select the appropriate model for required analysis.
	3. analyze the performance of the system with small signal analysis.

4. evaluate the stability of the single and multi machine systems. 5. develop measures for enhancing the stability of the system. 6. Solve numerical problems of linear dynamical system, modeling of diffe Name of the Subject: ADVANCED ELECTRIC DRIVE Subject Code: PE-EE 801C Year: 4TH 1. explain the principle of operation of converters for AC drives. Course **Outcomes** 2. model Induction and Synchronous motor by reference frame theory. 3. apply different control methods to control speed and torque of Inductic 4. explain the configurations and method of speed control of BLDC, PMSM 5. realize basic blocks for DSP based motion control. 6. develop appropriate scheme for speed control of Induction and Synchri Name of the Subject: INDUSTRIAL AUTOMATION AND CONTROL **Subject Code:** : PE-EE 801D Year: 4TH Course 1. explain the basic structure of industrial automation and control 2. classify different types of control actions of controllers. **Outcomes** 3. analyze control strategies of different processes of industry. 4. illustrate the construction and use of different types of actuators and c 5. use PLC, DCS and SCADA in advanced industrial control. Name of the Subject: SOFT COMPUTING TECHNIQUES Subject Code: OE-EE 801A Year: 4[™] 1. explain soft computing techniques and their roles in building intelligent Course **Outcomes** 2. anlyse the feasibility of application of soft computing techniques for a r 3. effectively use existing software tools to solve real problems using a sc 4. evaluate solutions by various soft computing approaches for a given pr 5. apply different soft computing techniques to solve Engineering problem Name of the Subject: BIOMEDICAL INSTRUMENTATION Subject Code: OE-EE 801B Year: 4[™] 1. describe the principle of medical transducers for temperature, pressure Course **Outcomes** 2. explain the principle of operation of Biomedical recorders, Medical Ima-3. use different Medical laboratory equipments for different tests. 4. analyze any measurement application and suggest suitable measurem 5. suggest suitable imaging methodology for a specific ailment. Name of the Subject: INTRODUCTION TO MACHINE LEARNING **Subject Code:** OE-EE 801C Year: 4[™] 1. explain the basics concepts and classification of Machine Learning. Course **Outcomes** 2. write simple programs using python. 3. describe Supervised Learning concepts. 4. explain the concept of Support Vector Machine. 5. describe unsupervised learning concepts and dimensionality reduction 6. apply Machine Learning in a range of real-world applications.

Name of the Subject: SENSORS AND TRANSDUCERS

Subject Code: OE-EE 801D

Course Outcomes

- 1. explain the basic principle of operation of Transducers and Sensors.
- 2. distinguish different sensors and transducers.
- 3. identify suitable transducer by comparing different industrial standards
- 4. estimate the performance of different transducers.
- 5. design real life electronics and instrumentation measurement systems

PROGRAMME OUTCOMES (PO) BASED ON G.A.

		PO1	PO2	PO3	PO4
Course	CO1	0.67	0.67	0.67	0.67
Outcomes	CO2	0.67	0.67	0.67	0.67
	CO3	0.67	0.67	0.67	
	CO4	0.67	0.67	0.67	0.67
	CO5	0.67	0.67	0.67	
	CO6	0.67	0.67	0.67	0.67
Course	CO1	0.66	0.66	0.66	0.66
Outcomes	CO2	0.66	0.66	0.66	0.66
	CO3	0.66	0.66	0.66	
	CO4	0.66	0.66	0.66	0.66
	CO5	0.66	0.66	0.66	
	CO1	0.74	0.74	0.74	0.74
Course	CO2	0.74	0.74	0.74	0.74
Outcomes	CO3	0.74	0.74	0.74	0.74
	CO4	0.74	0.74	0.74	0.74
	CO5	0.74	0.74	0.74	0.74
	CO6	0.74	0.74	0.74	0.74

	CO1	0.77	0.77	0.77	0.77
Course	CO2	0.77	0.77	0.77	0.77
Outcomes	CO3	0.77	0.77	0.77	0.77
Outcomes	CO4	0.77	0.77	0.77	0.77
	CO5	0.77	0.77		0.77
	CO1	0.78	0.78		0.78
	CO2	0.78	0.78		0.78
Course	CO3	0.78	0.78		0.78
Outcomes	CO4	0.78	0.78		0.78
• accomes	CO5	0.78	0.78		0.78
	CO6	0.78	0.78		0.78
	CO1	0.75			
	CO2	0.75			0.75
Course	соз	0.75			0.75
Outcomes	CO4	0.75			0.75
	CO5	0.75			0.75
	CO6	0.75			0.75
	CO1	0.92			
	CO2				
Course	CO1	0.9	0.9	0.9	0.9
Outcomes	CO2	0.9	0.9	0.9	0.9
	CO3	0.9	0.9	0.9	
	CO4	0.9	0.9	0.9	0.9
	CO5	0.9	0.9	0.9	
	CO6	0.9	0.9	0.9	0.9
Course	CO1	0.89	0.89	0.89	0.89
Outcomes	CO2	0.89	0.89	0.89	0.89
	CO3	0.89			
	CO4	0.89	0.89	0.89	0.89
	CO5	0.89			
	CO1	0.84			0.84
Course	CO2	0.84			0.84
Outcomes	CO3	0.84			0.84
	CO4	0.84			0.84
	CO5	0.84			0.84
	CO6	0.84			0.84
	CO1	0.87	0.87	0.87	0.87
Course	CO2	0.87	0.87	0.87	0.87
Outcomes	CO3	0.87	0.87		
	CO4	0.87			
	CO5	0.87	0.87		0.07
	CO6	0.87	0.87		0.87
	CO1	0.76			
Course	CO2 CO3	0.76 0.76			
Outcomes	CO4	0.76			
	CO5	0.76			
		0.76	0.76	0.76	0.76

	CO6	0.76	0.76	0.76	0.76
	CO1	0.72	0.72	0.72	0.72
Course	CO2	0.72	0.72	0.72	
Outcomes	CO3	0.72	0.72	0.72	
	CO4	0.72			
	CO5	0.72			0.72
	CO6	0.72	0.72	0.72	
	CO1	0.71	0.71	0.71	0.71
Course	CO2	0.71	0.71		
Outcomes	CO3	0.71	0.71	0.71	
	CO4	0.71			
	CO5	0.71			0.71
	CO6	0.71	0.71	0.71	0.71
	CO1	0.88	0.88	0.88	0.88
Course	CO2	0.88	0.88	0.88	
Outcomes	соз	0.88	0.88	0.88	
	CO4	0.88			
	CO5	0.88			0.88
	CO6	0.88	0.88	0.88	0.88
	CO1	0.95	0.95	0.95	0.95
Course	CO2	0.95	0.95	0.95	
Outcomes	CO3	0.95	0.95	0.95	
	CO4	0.95			
	CO5	0.95			0.95
	CO6	0.95	0.95	0.95	0.95
	CO1	0.76	0.76	0.76	0.76
Course	CO2	0.76	0.76		
Outcomes	CO3	0.76	0.76	0.76	
	CO4	0.76			
	CO5	0.76			0.76
	CO6	0.76	0.76	0.76	0.76
	CO1	0.92	0.92	0.92	0.92
Course	CO2	0.92	0.92	0.92	
Outcomes	CO3	0.92	0.92	0.92	
	CO4	0.92			
	CO5	0.92			0.92
	CO6	0.92	0.92	0.92	0.92
	CO1	0.91	0.91	0.91	0.91
Course	CO2	0.91	0.91	0.91	
Outcomes	CO3	0.91	0.91	0.91	
	CO4	0.91			
	CO5	0.91			0.91
	CO6	0.91	0.91	0.91	0.91
	CO1	0.87	0.87	0.87	0.87
Course	CO2	0.87	0.87	0.87	
Outcomes	CO3	0.87	0.87	0.87	

	CO5	0.87			0.87
	CO6	0.87	0.87	0.87	0.87
	CO1	0.67	0.67	0.67	
Course	CO2	0.67			0.67
Outcomes	CO3	0.67			0.67
Outcomes	CO4				0.67
	CO5		0.67	0.67	
	CO6	0.67	0.67	0.67	
	CO1	0.84	0.84	0.84	
Course	CO2	0.84			0.84
Outcomes	CO3	0.84			0.84
	CO4				0.84
	CO5		0.84	0.84	
	CO6	0.84	0.84	0.84	
	CO1	0.71	0.71	0.71	
Course	CO2	0.71			0.71
Outcomes	соз	0.71			0.71
	CO4				0.71
	CO5		0.71	0.71	
	CO6	0.71	0.71	0.71	
	CO1	0.92	0.92	0.92	
Course	CO2	0.92			0.92
Outcomes	CO3	0.92			0.92
	CO4				0.92
	CO5		0.92	0.92	
	CO6	0.92	0.92	0.92	
	CO1	0.63	0.63	0.63	
Course	CO2	0.63			0.63
Outcomes	CO3	0.63			0.63
	CO4				0.63
	CO5		0.63	0.63	
	CO6	0.63	0.63	0.63	
	CO1	0.87	0.87	0.87	
Course	CO2	0.87			0.87
Outcomes	CO3	0.87			0.87
	CO4				0.87
	CO5		0.87	0.87	
	CO6	0.87	0.87	0.87	
	CO1	0.68	0.68	0.68	
Course	CO2	0.68			
Outcomes	CO3	0.68			
	CO4				
	CO5		0.68	0.68	
	CO6	0.68		0.68	
	CO1	0.83	0.83	0.83	
Course	CO2	0.83			
Outcomes	CO3	0.83			

	CO4	1		1	1
	CO5		0.83	0.83	
	CO6	0.83	0.83	0.83	
	CO1	NA	NA	NA	NA
Course	CO2	NA	NA	NA	NA
Outcomes	CO3	NA	NA	NA	NA
	CO4	NA	NA	NA	NA
	CO5	NA	NA	NA	NA
	CO6	NA	NA	NA	NA
	CO1		0.83	0.83	0.83
Course	CO2	0.83	0.83		
Outcomes	CO3	0.83	0.83		
	CO4	0.83			
	CO5	0.83		0.83	0.83
	CO6	0.83	0.83	0.83	0.83
	CO1	0.71	0.71	0.71	0.71
Course	CO2	0.71	0.71		
Outcomes	CO3	0.71	0.71		
Outcomes	CO4	0.71			
	CO5	0.71		0.71	0.71
	CO6	0.71	0.71		0.71
	CO1	0.68			0.68
Course	CO2	0.68			
Outcomes	CO3	0.68	0.68		
Outcomes	CO4	0.68			
	CO5	0.68		0.68	0.68
	CO6	0.68	0.68		
	CO1	NA	NA	NA	NA
Course	CO2	NA	NA	NA	NA
Outcomes	CO3	NA	NA	NA	NA
Outcomes	CO4	NA	NA	NA	NA
	CO5	NA	NA	NA	NA
	CO6	NA	NA	NA	NA
	CO1	0.73			
Course	CO2	0.73	0.73		
Outcomes	CO3	0.73			
Outcomes	CO4	0.73			
	CO5	0.73		0.73	0.73
	CO6	0.73			
	CO1	0.89			0.89
Course	CO2	0.89			3.00
Outcomes	CO3	0.89			
Juccomes	CO4	0.89			
	CO5	0.89		0.89	0.89
	CO6	0.89			0.89
	CO1	0.65	ບກາ	u na	

Outcomes	соз	0.65	0.65		
	CO4	0.65	0.65		
	CO5	0.65	0.65	0.65	0.65
	CO6	0.65	0.65	0.65	0.65
	CO1	0.89	0.89	0.89	0.89
Course	CO2	0.89	0.89		
Outcomes	CO3	0.89	0.89		
Gutcomes	CO4	0.89	0.89		
	CO5	0.89	0.89	0.89	0.89
	CO6	0.89	0.89	0.89	0.89
	CO1	0.92	0.92	0.92	0.92
Course	CO2	0.92	0.92		
Outcomes	CO3	0.92	0.92		
Guttomics	CO4	0.92	0.92		
	CO5	0.92	0.92	0.92	0.92
	CO6	0.92		0.92	0.92
	CO1	0.68	0.68	0.68	0.68
Course	CO2	0.68			0.68
Outcomes	соз	0.68			0.68
Guttomics	CO4	0.68			0.68
	CO5	0.68	0.68	0.68	0.68
	CO6	0.68	0.68	0.68	0.68
	CO1	NA	NA	NA	NA
Course	CO2	NA	NA	NA	NA
Outcomes	CO3	NA	NA	NA	NA
Guttomics	CO4	NA	NA	NA	NA
	CO5	NA	NA	NA	NA
	CO6	NA	NA	NA	NA
	CO1	NA	NA	NA	NA
Course	CO2	NA	NA	NA	NA
Outcomes	соз	NA	NA	NA	NA
	CO4	NA	NA	NA	NA
	CO5	NA	NA	NA	NA
	CO6	NA	NA	NA	NA
	CO1	0.9	0.9	0.9	0.9
Course	CO2	0.9	0.9	0.9	0.9
Outcomes	соз	0.9	0.9		
	CO4	0.9	0.9		
	CO5	0.9	0.9	0.9	0.9
	CO6	0.9	0.9	0.9	0.9
	CO1	NA	NA	NA	NA
Course	CO2	NA	NA	NA	NA
Outcomes	CO3	NA	NA	NA	NA
	CO4	NA	NA	NA	NA
	CO5	NA	NA	NA	NA
	CO6	NA	NA	NA	NA
	CO1	0.87	0.87	0.87	0.87
	1001	0.07	0.07	0.07	0.0

Course	CO2	0.87	0.87	0.87	0.87
Outcomes	CO3	0.87			0.87
Outcomes	CO4	0.87	0.87	0.87	0.87
	CO5	0.87			
	CO6	0.87	0.87	0.87	0.87
	CO1	0.86	0.86	0.86	
Course	CO2	0.86	0.86	0.86	0.86
Outcomes	CO3	0.86	0.86	0.86	
Outcomes	CO4	0.86	0.86		0.86
	CO5	0.86	0.86		0.86
	CO6	0.86	0.86		0.86
	CO1	0.83	0.83	0.83	0.83
Course	CO2	0.83	0.83		
Outcomes	CO3	0.83			
	CO4	0.83	0.83	0.83	0.83
	CO5	0.83	0.83	0.83	
	CO6	0.83	0.83	0.83	
	CO1	0.92	0.92	0.92	0.92
Course	CO2	0.92	0.92		
Outcomes	соз	0.92			
	CO4	0.92	0.92	0.92	0.92
	CO5	0.92	0.92	0.92	
	CO6	0.92	0.92	0.92	
	CO1	NA	NA	NA	NA
Course	CO2	NA	NA	NA	NA
Outcomes	CO3	NA	NA	NA	NA
	CO4	NA	NA	NA	NA
	CO5	NA	NA	NA	NA
	CO6	NA	NA	NA	NA
	CO1	NA	NA	NA	NA
Course	CO2	NA	NA	NA	NA
Outcomes	CO3	NA	NA	NA	NA
	CO4	NA	NA	NA	NA
	CO5	NA	NA	NA	NA
	CO6	NA	NA	NA	NA
	CO1	0.82	0.82	0.82	
Course	CO2	0.82	0.82	0.82	
Outcomes	CO3	0.82		0.82	
	CO4	0.82	0.82	0.82	
	CO5	0.82	0.82	0.82	
	CO6	0.82		0.82	
	CO1	0.84	0.84	0.84	0.84
Course	CO2	0.84		0.84	0.84
Outcomes	CO3	0.84			
	CO4	0.84			
	CO5	0.84		0.84	
	CO6	0.84	0.84	0.84	0.84

	CO1	NA	NA	NA	NA
Course	CO2	NA	NA	NA	NA
Outcomes	CO3	NA	NA	NA	NA
	CO4	NA	NA	NA	NA
	CO5	NA	NA	NA	NA
	CO6	NA	NA	NA	NA
	CO1	NA	NA	NA	NA
Course	CO2	NA	NA	NA	NA
Outcomes	CO3	NA	NA	NA	NA
	CO4	NA	NA	NA	NA
	CO5	NA	NA	NA	NA
	CO6	NA	NA	NA	NA
	CO1	NA	NA	NA	NA
Course	CO2	NA	NA	NA	NA
Outcomes	CO3	NA	NA	NA	NA
	CO4	NA	NA	NA	NA
	CO5	NA	NA	NA	NA
	CO6	NA	NA	NA	NA
	CO1	NA	NA	NA	NA
Course	CO2		NA	NA	NA
Outcomes	CO3	NA	NA	NA	NA
	CO4	NA	NA	NA	NA
	CO5	NA	NA	NA	NA
	CO6	NA	NA	NA	NA
-	CO1	0.82	0.82		
Course	CO2	0.82	0.82	0.82	
Outcomes	соз	0.82	0.82	0.82	
	CO4	0.82	0.82	0.82	
	CO5	0.82	0.82	0.82	0.82
	CO6	0.82	0.82	0.82	0.82
	CO1	0.86			
Course	CO2	0.86	0.86		
Outcomes	CO3	0.86	0.86		
	CO4	0.86	0.86		
	CO5	0.86	0.86		
	CO6	0.86	0.86		
	CO1	0.91	0.91	0.91	0.91
Course	CO2	0.91	0.91	0.91	0.91
Outcomes	CO3	0.91	0.91	0.91	0.91
	CO4	0.91	0.91	0.91	0.91
	CO5	0.91	0.91	0.91	
	CO6	0.91	0.91	0.91	0.91
	CO1	0.92	0.92	0.92	0.92
Course	CO2	0.92	0.92	0.92	0.92
Outcomes	CO3	0.92	0.92	0.92	0.92
	CO4	0.92	0.92	0.92	0.92
	CO5	0.92	0.92	0.92	0.92

	CO6	0.92	0.92	0.92	0.92
	CO1	0.86	0.86		
Course	CO2	0.86	0.86		
Outcomes	CO3	0.86	0.86		
	CO4	0.86	0.86		
	CO5	0.86	0.86		
	CO6	0.86	0.86		
	CO1	0.87	0.87	0.87	0.87
Course	CO2	0.87	0.87	0.87	0.87
Outcomes	CO3	0.87	0.87	0.87	0.87
	CO4	0.87	0.87	0.87	0.87
	CO5	0.87	0.87	0.87	0.87
	CO6	0.87	0.87	0.87	0.87
	CO1	0.85	0.85		
Course	CO2	0.85	0.85		0.85
Outcomes	CO3	0.85	0.85		
	CO4	0.85	0.85		0.85
	CO5	0.85	0.85		0.85
	CO6	0.85	0.85		0.85
	CO1	0.94	0.94	0.94	0.94
Course	CO2	0.94	0.94	0.94	0.94
Outcomes	CO3	0.94	0.94	0.94	0.94
	CO4	0.94	0.94	0.94	0.94
	CO5	0.94	0.94	0.94	0.94
	CO6	0.94	0.94	0.94	0.94
	AVERAGE	0.818013937	0.822268908	0.819392265	0.81755814
	PERCENTAGE (%)	81	82	81	81

Apply the knowledge of mathematics, science, nentals, and an engineering specialisation for the solution of complex engineering problem

ng first principles of mathematics, natural sciences, and engineering sciences.

gn system components or processes that meet the specified needs with appropriate considerations.

ling design of experiments, analysis and ide valid conclusions.

and modern engineering and IT tools, including prediction and modelling to complex engin

ess societal, health, safety, legal, and cultural issues and the consequent responsibilities

ons in societal and environmental contexts, and demonstrate the knowledge of, and need for

d responsibilities and norms of the engineering practice.

der in diverse teams, and in multidisciplinary settings.

th the engineering community and with the society at large, such as, being able to comprive presentations, and give and receive clear instructions.

ing and management principles and apply these to one's own work, as a member and lead

 γ to engage in independent and life-long learning in the broadest context of technological ϵ

l olve real

lated to urces, high

ory ves,

on and of
ngineering
ng a
e of the Subject: ELECTRIC CIRCUIT THEORY Subject Code: : PC-EE 301 Year: 2nd (New Syllabus)
of networks.
me of the Subject: ANALOG ELECTRONICS Subject Code: PC-EE 302 Year: 2nd (New Syllabus)
regulators and analog electronic circuits.
ed on application.
the Subject: ELECTRO MAGNETIC FIELD THEORY Subject Code: PC-EE 303 Year: 2nd (New Syllabus)
netic problems.
e of the Subject: ENGINEERING MECHANICS
Subject Code: ES-ME 301 Year: 2nd (New Syllabus)
nematics and kinetics of rigid bodies.
n and friction.

riction and rigid bodies.
Vame of the Subject: MATHEMATICS-III
Subject Code: BS- M 301
Year: 2nd (New Syllabus)
Z transform
sis and Z transform
e of the Subject: BIOLOGY FOR ENGINEERS
Subject Code: BS-EE- 301
Year: 2nd (New Syllabus)
ries.
of cancer.
transfer
mo of the Cubicate INDIAN CONSTITUTION
me of the Subject: INDIAN CONSTITUTION Subject Code: : MC-EE 301
Year: 2nd (New Syllabus)
f Union, state and local self-government. Structure, jurisdiction and function of Indian
.y.
Edda Cabia da a Flactuia sinavit tha annul alcuntam
f the Subject: Electric circuit theory Laboratory
Subject Code: PC-EE391 Year: 2nd (New Syllabus)
on successful completion of the course, student will have:
ponse of filters, Laplace transform and inverse Laplace transform
ponde di interdi Eupidee transform una inverse Eupidee transform
of the Subject: : Analog Electronic laboratory
Subject Code: PC-EE392
Year: 2nd (New Syllabus)
on successful completion of the course, student will have:
fter completion of this course, the learners will be able to
er (A)characteristics of BJT and FET,(B)characteristics of Zener diode as voltage regula
ge regulator using regulator IC chip.timer circuit using 555 for monostable, astable an

nentioned outcomes are not limited. Institute may redefine outcomes based their progr of the Subject: : Numerical Methods laboratory **Subject Code:** PC-CS 391 **Year:** 2nd (New Syllabus) n ear equations using al solution of Algebraic Equation by Regularfalsi and Newton Raphson methods. me of the Subject: : ELECTRIC MACHINE-I **Subject Code:** PC-EE-401 **Year:** 2nd (New Syllabus) on successful completion of the course, student will have: chines and transformers ransformers ne of the Subject: : DIGITAL ELECTRONICS **Subject Code:** PC-EE-402 Year: 2nd (New Syllabus) on successful completion of the course, student will have: niconductor memories and programmable logic devices. circuits, A/D and D/A converter onal & sequential digital circuits and A/D and D/A converter. **ubject:** : ELECTRICAL & ELECTRONICS MEASUREMENTS **Subject Code:** PC-EE-403 **Year:** 2nd (New Syllabus) on successful completion of the course, student will have: ors in measurement, loading effect resistance, capacitance and inductance by bridges and potentiometer er, digital multimeter, digital voltmeter, digital frequency meter, signal generator, stra and measurement techniques of voltage, current, frequency and phase by oscilloscope ner, measurement of power, energy, resistance, inductance and capacitance and transducers f the Subject: : THERMAL POWER ENGINEERING Subject Code: ES-EE-401 **Year:** 2nd (New Syllabus)

pines
engines and Gas turbines.
≥S.
he Subject: : VALUES AND ETHICS IN PROFESSION
Subject Code: HM-EE-401
Year: 2nd (New Syllabus)
ibility and duties
ethics and social experimentation
s safety and risk
of the Subject: : ENVIRONMEMTAL SCIENCE
Subject Code: MC-EE-401
Year: 2nd (New Syllabus)
tivities
environmental and health risk
he environmental laws and regulations
ind pollution.
the Subject: : ELECTRIC MACHINE-I LABORATORY
Subject Code: PC-EE491
Year: 2nd (New Syllabus)
ol of DC motor and parallel operation of the transformer
he Subject: : DIGITAL ELECTRONICS LABORATORY
Subject Code: PC-EE492
Year: 2nd (New Syllabus)
propriate instruments and precaution
and flip-flops and asynchronous and synchronous up down counters
ice versa, 4 bit parity generator & comparator circuits,
t:: ELECTRICAL & ELECTRONICS MEASUREMENT LABORATORY
Subject Code: PC-EE493
Year: 2nd (New Syllabus)

oving iron and dynamometer type ammeter, voltmeter and wattmeter by potentiomet :e, inductance, capacitance
te, inductance, capacitance
,
Sala at a THERMAL DOWER ENGINEEING LARORATORY
Subject: : THERMAL POWER ENGINEEING LABORATORY
Subject Code: ES-ME-491
Year: 2nd (New Syllabus)
ecautions
ochran Boiler, Vertical Tubular Boiler, Locomotive Boiler, 4S Diesel Engine, 4S Petrol Er
ctrical load box and rope brake dynamometer
the Subject: ELECTRIC MACHINE-II PC-EE-501
Subject Code: PC-EE-501
Year: 3rd
agnetic fields.
nase Induction machines
hase Induction machines
nous machine
electromechanical devices.
special eletromechanical device.
Name of the Subject: POWER SYSTEM-I
Subject Code: : PC-EE-502
Year: 3rd (Old Syllabus)
nt sources
1 cables.
n line
lame of the Subject: CONTROL SYSTEM
Subject Code: PC-EE-503
Year: 3rd
ms
me of the Subject: POWER ELECTRONICS

Subject Code: PC-EE-504 Year: 3rd ices. 1 of SCR reduction of harmonics of the converter the Subject: ELECTRIC MACHINE-IILABORATORY **Subject Code:** : PC-EE 591 Year: 3rd hase Inductionmotor, Induction generator and synchronous motor, methods of speed of the Subject: POWER SYSTEM-I LABORATORY **Subject Code:** PC-EE 592 Year: 3rd own strength of solidinsulating material and dielectric constant of transformer oil. of the Subject: CONTROL SYSTEMLABORATORY **Subject Code:** PC-EE 593 Year: 3rd ICE for simulation of systems. the Subject: POWER ELECTRONICSLABORATORY **Subject Code:** PC-EE 594 **Year:** 3rd

of the Subject: DATA STRUCTURE & ALGORITHM

Subject Code: OE-EE-501A Year: 3rd nce the performance of the program. lem. 3, searching, and hashing ns. the Subject: OBJECT ORIENTED PROGRAMMING **Subject Code:** OE-EE-501B norphism, lame of the Subject: POWER SYSTEM-II **Subject Code:** PC-EE-601 Year: 3rd studies. nents. bilty and protection ofpower system. e Subject: MICROPROCESSOR & MICROCONTROLLER **Subject Code:** PC-EE-602 e of the Subject: DIGITAL CONTROL SYSTEM **Subject Code: PE-EE-601A Year:** 3rd tems.

cations.

me of the Subject: HVDC TRANSMISSION
Subject Code: PE-EE-601B
Year: 3 rd
fter completion of this course the students will be able to
pplication(s).
iverters.
des.
eactive power control.nts.
of the Subject: ELECTRICAL MACHINE DESIGN
Subject Code: PE-EE-601C
Year: 3 rd
ign of an ac machine
nagnetic and thermalloading of electrical machines
nachines.
the Subject: ELECTRICAL AND HYBRID VEHICLE
Subject Code: PE-EE-602A
Year: 3 rd
lepending on resources.
vehicles.
a of the Subject, DOMED OUALITYANDEACTS
e of the Subject: POWER QUALITYANDFACTS Subject Code: PE-EE-602B
Year: 3 rd
icteristics.
icteristics.
explain working principle of dynamic voltage restorer and UPQC
explain working principle of dynamic voltage restorer and of Qe
-
strial consumers.
ctrical systems.
ectrical systems.
power factor correction.
F

in the frequencydomain.
o SNR
ceivers
ommunication system nication link
THECKIOTI HITK
gital modulation systems
ıtion
eduling, legal andregulatory issues applied to economic investment and project-manage
earth fault relay, on loadtime delay relay, off load time delay relay, CT and PT.
der. 6. Apply software tools to find bus voltage, currents and power flows throughout t

a number in a string andstring manipulation
ns of 8051
sor and signal conditioning circuits
n system for small township, double circuit transmission line and Electric machines with lift and pump and for an applicationwith analog, digital, mixed signal, microcontroller and PCB
rmance.
te space.
ration and pollution. tems stems
ergy intensive industrialequipments
ition.

mes minimum for a definedlevel of load.
d phase angles at all buses. mand at all the times.
mana at an the times.
nd transform the real lifeinformation in different representation
id transform the real memormation in different representation
nine learning
and limitations, and societalimplications
erent contexts
he key technologies andprotocols employed at each layer of the stack
ata analysis
ılgorithm, areafilling algorithms.
acteristics and attributesof Embedded Systems
bedded systems.
ms. 6. design RTOS based Embedded systems.
. 2. enhance images in the spatial and frequency domain using various transforms.

rces in the organizationsand integrate the learning in handling these complexities. gement.
3. 2. explain the fundamental of Electrolytic processes, Electric heating and Welding. specific applications.
of traction motor.

erent components and stability.
on and Synchronous motor.
1 and SRM.
onous motor.
ontrol valves.
machines
particular problem
oft computing approach
roblem.
1S.
e and respiration rate.
ging equipments Surgical & Therapeutic Instruments and Medical Laboratory Instruments
nent methods.
ient methods.
techniques.

3 and procedures for measurement of physical parameters

. 6. apply smart sensors, bio-sensors, PLC and Internet of Things to different applicati

PO5	P06	PO7	PO8	PO9	PO10
-					
0.67					

•	Ī		i .	i
0.70				
0.78				
0.78				
	0.75			
		0.75		
		0.75		
		0.75		
	0.92	0.92		
	0.92	0.92		
	0.52	0.52		
0.9				
0.84				
0.84				
	0.76			
	-			

		1			
0.72	0.72			0.72	
	0.72			0.72	
	0.12			0.72	
	0.72				
0.72					
0.72					
0.71				0.71	
V.71				0.71	
				0.71	
0.71					
0.71	0.00			0.00	
0.88				0.88	
	0.88			0.88	
	0.88				
	0.88				
0.88					
0.88					
0.95				0.95	
	0.95			0.95	
	0.95				
	0.95				
0.95					
0.95					
0.76					
	0.76				
	0.76				
0.76					
0.76					
0.92					
	0.92				
	0.92				
	0.92				
0.92					
0.92					
0.91	0.91				
0.91					
0.91					
0.87	0.87				
	0.87				
	0.87				
	0.87				

0.87				
0.87				
		0.67		
	0.67			
	0.67			
0.67	0.67	0.67	0.67	
0.67			0.67	
		0.84		
-		0.84	0.84	
-			0.84	
		0.71		
	0.71	5.71		
	0.71			
	0.71	0.71	0.71	
	0.71	0.71	0.71	
			0.71	
		0.02		
	0.00	0.92		
	0.92			
	0.92			
	0.92	0.92	0.92	
			0.92	
		0.63		
		0.63	0.63	
			0.63	
		0.87		
		0.87	0.87	
			0.87	
		0.68		
		0.68	0.68	
			0.68	
		0.83		

		0.83		0.83	
				0.83	
NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA
			0.83		
				0.83	
				0.83	
			0.83	0.83	0.83
				0.83	0.83
			0.71		
			0.71		0.71
					0.71
			0.68		
			0.68		0.68
					0.68
NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA
	NA				NA
NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA
		0.73			
		0.73			
		0.73	0.73		0.73
					0.73
		0.89			
		0.89			
		0.89	0.89		0.89
					0.89
		0.65	0.65		

		0.65			
0.65					
0.65		0.65	0.65		0.65
0.65					0.65
		0.89	0.89		
		0.89			
0.89					
0.89		0.89	0.89		0.89
0.89					0.89
0.92					
0.92		0.92			
		0.92			
0.92		0.92	0.92		0.92
0.92					0.92
	0.68	0.68			
	0.68	0.68			
	0.68	0.68		0.68	
				0.68	
NA	NA	NA	NA		NA
	NA	NA	NA		NA
	NA	NA	NA		NA
	NA	NA	NA		NA
NA	NA	NA	NA	NA	NA
	NA	NA	NA		NA
	NA	NA	NA		NA
	NA	NA	NA		NA
	NA				NA
	NA		NA		NA
	NA	NA	NA		NA
	NA	NA	NA		NA
	0.9	0.9			
	0.9				
		0.9			
		0.9			
		0.0			
NA	NA	NA	NA	NA	NA
	NA	NA	NA NA	NA NA	NA
	NA		NA NA		NA
	NA NA	NA NA			NA NA
	NA NA	NA NA	NA NA		NA NA
	NA NA	NA NA	NA NA	NA NA	NA NA
IVA	IVA	IVA	IVA	IVA	IVA

	0.87	0.87	0.87		
	0.87		0.87		
	0.87		0.87		
	0.86				
	0.86				
	0.86				
	0.86				
	0.86				
0.83					
0.83					
0.83					
0.83	0.83				
	0.83				
0.83					
0.92					
0.92					
0.92					
0.92	0.92				
	0.92				
0.92					
NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA
0.82		0.82	0.82		
0.82		0.82	0.82		
	0.82	0.82	0.82		
	0.82				
0.82	0.82				
0.82		0.82	0.82		
0.84	0.84				
		0.84			
0.84					
0.84	0.84				
		0.84			
0.84	0.84	0.84			

NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA
	0.82				0.82
	0.82				0.82
		0.8	2		
		0.8			
		0.0.			
	_				
	_				0.86
	_				0.00
	_				
	_				
	0.91				
	0.51				0.91
				0.91	
		0.04		0.91	
		0.91	0.04		
			0.91		
	0.00				
	0.92				
					0.92
				0.92	
		0.92			
			0.92		

				0.86	
					0.86
			0.86		0.86
					0.86
_					0.87
					0.85
					0.85
					0.94
0.94					
	0.94				
				0.94	
		0.94			
0.812272727	0.796060606	0.8136	0.805090909	0.840923077	0.838873239
81	79	81	80	84	83

deration for

neering

relevant to

or sustainable

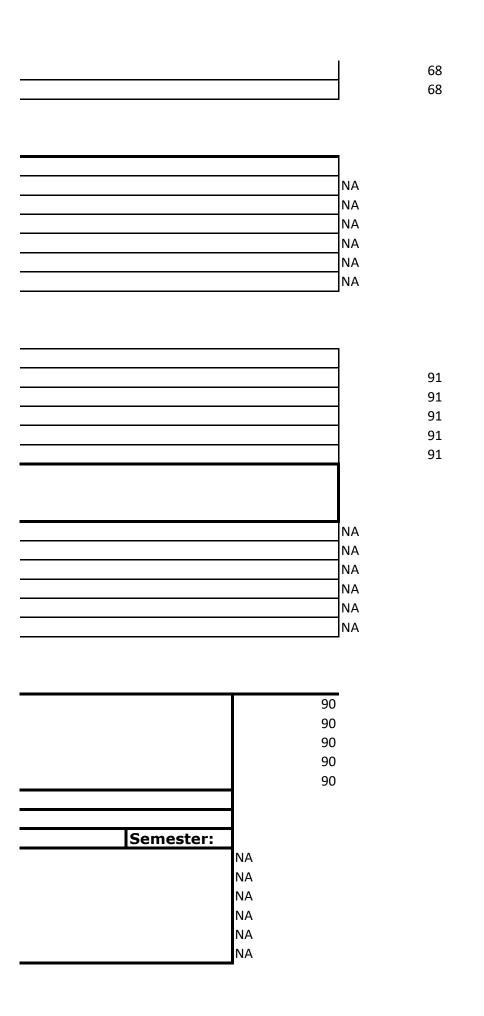
ehend and

der in a team,

change.

67
67
67
67
67
67
 66
66
66
66
 66
66
 7.4
 74
74
74
74
74
74
i
77
77
77

	77
	77
	, ,
	78
	78
	78
	78
	78
	_
	75
	75
	75
	75
	75
	75
	75
	75
Judiciary,Basics of PIL and guideline for	92
Judicial Y/Dubics of 112 and galacime for	92
	92
-	
	90
	90
	90
	90
	90
	90
	89
	89
tor (C) characteristics of class A C and	89
tor, (C) characteristics of class A, C and	
	89
d multistable, multivibrator. V to I and I	89
·	•


	89
ram educational objective.	89
	84
	84
	84
	84
	84
	84
	84
	87
	87
	87
	87
	87
	87
	76
	76
	76
	76
	76
	76
	76
	7
	72
	72
in gauge, LVDT and temperature	72
	72
	72
	72
	7
	71

	71
	71
	71
	71
	71
	71
	88
	88
	88
	88
	88
	88
	95
	95
	95
	95
-	95
	33
	76
	76
	76
	76
	76
	76
	92
	92
	92
	92
	92
	92
	91
	91

	91
	91
or	91
er	91
	91
	91
	87
	87
ngine, 2S Petrol engine	87
igilie, 25 recibi eligilie	87
	87
	87
	67
	67
	67
	67
	67
	67
	67
	67
	71
	71
	71
	71
	71
	71
	71
	, _
	63
	63
	63
	63
	63
	63
	33
l	1

	1
	68
	68
-	68
	68
	68
	68
	58
	•
	84
	84
	84
	84
control of Inductionmotors and parallel	84
·	84
	92
	92
	92
	92
	92
	92
	92
-]
	87
	87
-	87
	87
	87 87
	67
	Į
	83
	83
	83

	71
	71
	71
	71
	71
	71
Eth com	
5th sem	
	68
	68
	68
-	
	68
	68
	68
	73
	73
	73
	73
	73
	73
	73
	/3
	65
-	
	65
	65
	65
	65
	Į.
	68
	68
	68
	68

Semester:	
	NA
Semester:	
Semesteri	87
	87
	87
	87
	87
	87
Samastan	
Semester:	NA
Semester:	
	86
	86 86
	86
	86
gement problems	86
Semester:	
	89
	89 89
	89 89
:he electrical system.	89
5,555	89
Semester:	
	89

		89 89 89 89
		89
Semester:		
		92
		92 92
		92
		92
		92
Semester:		
		83 83
		83
		83
		83
		83
Semester: 7 th	NIA	
	NA NA	
	NA	
	NA	
	NA NA	
Semester:	NA	
	NA	
	NA	
	NA NA	
	NA	
 Semester:		
		82

	82
	82
	82
	82
	82
Semester:	
Semester.	84
	84
	84
	84
	84
Semester:	
	NA
Semester:	
	NA
Semester:	
	NA
	NA
	NA
	NA
	NA NA
	NA
Semester:	
	NA
	NA
	NA
	NA NA
	NA

Semester:		
	82	
	82	
	82	
	82 82	
	82	
	01	
Semester:		
	86	
	86 86	
	86	
	86	
	86	
I Comment and		
Semester:	92	
	92	
	92	
	92	
	92	
	92	
Semester:		
	86	
	86	
	86	
	86	
Semester:		
	NA	
	NA	
	NA	
	NA NA	
	NA NA	
Semester:		
	87	
	87 97	
	87	

	┪
]
Semester:	-
	NA NA
	NA
	NA
	NA
	NA
	┪
Semester:]
	NA
	NA NA
	NA NA
	NA
]
l Comportori	4
Semester:	NA
	NA
	NA
	NA NA
	INA
Semester:	_
ntc	NA NA
nts.	NA NA
	NA
	NA
	-
Semester:	┨
23651011	NA
	NA
	NA NA
	NA NA
	NA
]

Semester:	
ons.	
PO11	PO12
-	

-	
0.71	
0.71	
0.71	
0.88	
0.88	
0.88	
0.88	
0.95	
0.95	
0.95	
0.95	
-	
-	

0.68
 0.68
0.68
0.68
0.83
 0.83

	0.8	3
NA	NA	
NA NA	NA NA	
NA .	NA	
		_
		_
		_
	_	-
		_
		_
N/A	N.A.	
NA NA	NA NA	
NA NA	NA NA	
NA NA	NA NA	
NA NA	NA NA	
NA NA	NA NA	
	NA .	_
	0.73	3
	0.73	
	0.73	
		-
		_
		_
		_
		_

	-
NA	NA
	NA
NA	NA
-	
NA	NA
-	

	•
0.86	
0.86	
0.86	0.86
	0.86
	0.86
0.86	0.86
0.83	
0.83	
0.83	
0.92	
0.92	
0.92	
NA	NA
0.82	
0.82	
0.82	
0.82	

NA	NA
NA	NA
NA NA	NA NA
NA NA	NA NA
NA NA	NA NA
NA.	NA .
0.86	
	0.86
0.86	
	0.86
0.91	
	0.91
0.92	

	0.92
	0.87
0.94	
	0.94
0.863666667	0.816842105
86	81

Department of Electronics & Communication Engineering CO ATTAINMENT 2021-2022

Paper Code (Name)	COs	COURSE OUTCOMES(COs)	Attainm ent (%)
		3 RD SEMESTER	
	CO1	Differentiate the conduction techniques in semiconductor materials	75%
EC301 (Electronic	CO2	Analyze characteristics of semiconductor diodes, bipolar transistors, Mos- Transistors and solve problems.	75%
Devices)	CO3	Differentiate between different Opto-electronic devices	75%
	CO1	Convert various number system and apply logic gates, Boolean algebra and K-Map to design digital circuits.	75%
EC302 (Digital System Design)	CO2	Design the digital combinational circuits likes decoders, encoders, multiplexers and de-multiplexers, half adder, full adder and compare their performance to optimize production cost and also develop sequential digital circuits like flip-flop, register, counter to design memory device.	75%
	CO3	Illustrate the knowledge of ROM,RAM,PROM,PLD,FPGA,TTL,CMOS and ECL apply them to design VLSI system.	75%
EC303	CO1	Analyze different types of signals.	45%
(Signals & Systems)	CO2	Represent continuous and discrete systems in time and frequency domain using different transforms.	45%
	CO3	Investigate whether the system is stable.	45%
	CO4	Sampling and reconstruction of a signal.	45%
EC304	CO1	Apply all the electrical network theories and the concept of resonance to typical electric circuits with AC & DC sources to solve problems related to electronics & Communication Engineering	67%
Network Theory	CO2	Apply Laplace transform technique to analyze complex electrical circuits in s domain and solve for voltage & current values related to electronics & communication Engineering.	67%
	CO3	Apply the knowledge of any set of two-port parameters for circuit analysis, & measurement of different parameters and convert one set of two-port parameters to another.	67%
ES-CS301	CO1	Implementation of different data structures efficiently.	75%
Data Structure & Algorithm (ES)	CO2	Usage of well-organized data structures to handle large amount of data.	75%
	CO3	Usage of appropriate data structures for problem solving.	75%

The students will learn: The ideas of probability and random variables and various discrete and continuous probability distributions and their properties. CO2 The basic ideas of statistics including measures of central tendency, correlation and CO3 The statistical methods of studying data samples. CO1 Organize/Design the experiment related to Solid State Device Lab. Electronic Devices CO3 Conduct actual experiment related to Solid State Device Lab. CO4 Analyze data and draw conclusion related to Solid State Device Lab. CO5 Analyze with proper experimental data and graphs and communicate effectively related to Solid State Device Lab. CO6 Organize/Design the experiment related to Digital System Design Lab. CO7 CO8 CO9 Generate experimental Data related to Digital System Design Lab. CO8 CO9 Generate experimental Data related to Digital System Design Lab. CO9 CO9 CO9 CO9 CO9 CO9 CO9 CO9 CO9 CO	
CO2 The basic ideas of statistics including measures of central tendency, correlation and CO3 The statistical methods of studying data samples. CO1 Organize/Design the experiment related to Solid State Device Lab. 81 EC391 CO2 Generate experimental Data related to Solid State Device Lab. 81 Electronic Devices CO3 Conduct actual experiment related to Solid State Device Lab. 81 CO4 Analyze data and draw conclusion related to Solid State Device Lab. 81 CO5 Analyze with proper experimental data and graphs and communicate effectively related to Solid State Device Lab. 82 EC392 CO2 Generate experimental Data related to Digital System Design Lab. 83 CO4 Analyze data and draw conclusion related to Digital System Design Lab. 84 CO5 Generate experimental Data related to Digital System Design Lab. 85 CO6 Analyze data and draw conclusion related to Digital System Design Lab. CO7 Analyze with proper experimental data and graphs and communicate effectively related to Digital System Design Lab. CO8 Design and develop programs using data structure & algorithm concepts. CO9 Design and develop programs using data structure & algorithm concepts. CO1 Develop sign ple applications using linear and non-linear data structures & algorithms concepts and understand the access structures & algorithms concepts and underst	
EC391 CO2 Generate experimental Data related to Solid State Device Lab. 81 CO3 Conduct actual experiment related to Solid State Device Lab. 81 CO4 Analyze data and draw conclusion related to Solid State Device Lab. 81 CO5 Analyze with proper experimental data and graphs and communicate effectively related to Solid State Device Lab. CO6 Generate experimental Data related to Digital System Design Lab. CO7 Generate experimental Data related to Digital System Design Lab. CO8 Generate experimental Data related to Digital System Design Lab. CO9 CO9 Conduct actual experiment related to Digital System Design Lab. CO9 Analyze data and draw conclusion related to Digital System Design Lab. CO9 Analyze data and draw conclusion related to Digital System Design Lab. CO9 Analyze with proper experimental data and graphs and communicate effectively related to Digital System Design Lab. CO9 Design and develop programs using data structure & algorithm concepts. CO9 Develop simple applications using linear and non-linear data STRUCTURE STRUCTURE STRUCTURE & algorithms concepts and understand the access meaburisms and other was and functionallines.	-
EC391 CO2 Generate experimental Data related to Solid State Device Lab. Electronic Devices Lab.) CO3 Conduct actual experiment related to Solid State Device Lab. EC04 Analyze data and draw conclusion related to Solid State Device Lab. EC05 Analyze with proper experimental data and graphs and communicate effectively related to Solid State Device Lab. CO5 Generate experimental Data related to Digital System Design Lab. EC392 Digital System Design Design CO6 CO6 Analyze data and draw conclusion related to Digital System Design Lab. CO7	-
Electronic Devices CO3 Conduct actual experiment related to Solid State Device Lab. CO4 Analyze data and draw conclusion related to Solid State Device Lab. CO5 Analyze with proper experimental data and graphs and communicate effectively related to Solid State Device Lab. CO6 CO7	
CO3 Conduct actual experiment related to Solid State Device Lab. CO4 Analyze data and draw conclusion related to Solid State Device Lab. CO5 Analyze with proper experimental data and graphs and communicate effectively related to Solid State Device Lab. CO6 Organize/Design the experiment related to Digital System Design Lab. CO7 Generate experimental Data related to Digital System Design Lab. CO8 CO9 Conduct actual experiment related to Digital System Design Lab. CO9 Analyze data and draw conclusion related to Digital System Design Lab. CO9 Analyze with proper experimental data and graphs and communicate effectively related to Digital System Design Lab. CO9 Analyze with proper experimental data and graphs and communicate effectively related to Digital System Design Lab. CO9 Design and develop programs using data structure & algorithm concepts. CO9 Develop simple applications using linear and non-linear data structures & algorithms concepts and understand the access mechanisms and other use and functional linear.	391
CO3 Conduct actual experiment related to Digital System Design Lab. CO4 Analyze with proper experiment related to Digital System Design Lab. CO5 Generate experimental Data related to Digital System Design Lab. CO6 CO6 CO7	
EC392 CO2 Generate experiment al Data related to Digital System Design Lab. Base CO3 Conduct actual experiment related to Digital System Design Lab. CO4 Analyze data and draw conclusion related to Digital System Design Lab. CO5 Analyze with proper experimental data and graphs and communicate effectively related to Digital System Design Lab. CO6 Design and develop programs using data structure & algorithm concepts. CO7 Develop simple applications using linear and non-linear data structure & algorithms concepts and understand the access members and other use and functional lities.	b.)
EC392 CO2 Generate experimental Data related to Digital System Design Lab. CO3 Conduct actual experiment related to Digital System Design Lab. CO4 Analyze data and draw conclusion related to Digital System Design Lab. CO5 Analyze with proper experimental data and graphs and communicate effectively related to Digital System Design Lab. CO6 Design and develop programs using data structure & algorithm concepts. CO7 Design and develop programs using data structure & algorithm concepts. CO8 Develop simple applications using linear and non-linear data structures & algorithms concepts and understand the access mechanisms and other use and functionalities.	
Digital System Design CO3 Conduct actual experiment related to Digital System Design Lab. 88 CO4 Analyze data and draw conclusion related to Digital System Design Lab. 88 CO5 Analyze with proper experimental data and graphs and communicate effectively related to Digital System Design Lab. 88 CO6 Design and develop programs using data structure & algorithm concepts. 81 ESCS391 Develop simple applications using linear and non-linear data 81 Structure & algorithms concepts and understand the access 81 CO2 Design and develop programs using linear and non-linear data 81 CO8 Senerate experimental Data related to Digital System Design Lab. 88 ESCS391 Develop simple applications using linear and non-linear data 81 Structure & algorithms concepts and understand the access 82 CO9 Develop simple applications using linear and non-linear data 81	
CO3 Conduct actual experiment related to Digital System Design Lab. CO4 Analyze data and draw conclusion related to Digital System Design Lab. CO5 Analyze with proper experimental data and graphs and communicate effectively related to Digital System Design Lab. CO1 Design and develop programs using data structure & algorithm concepts. ESCS391 Develop simple applications using linear and non-linear data Structure & algorithms concepts and understand the access machanisms and other use and functionalities.	392
CO5 Analyze with proper experimental data and graphs and communicate effectively related to Digital System Design Lab. CO1 Design and develop programs using data structure & algorithm concepts. ESCS391 Develop simple applications using linear and non-linear data structures & algorithms concepts and understand the access machanisms and other use and functionalities.	,
cos effectively related to Digital System Design Lab. CO1 Design and develop programs using data structure & algorithm concepts. ESCS391 Develop simple applications using linear and non-linear data Structure & algorithms concepts and understand the access machinisms and other use and functionalities.	
CO1 concepts. ESCS391 Develop simple applications using linear and non-linear data structure CO2 structures & algorithms concepts and understand the access machenisms and other use and functionalities	-
Data Structure CO2 Structures & algorithms concepts and understand the access machenisms and other use and functionalities	
	ta Structure
CO3 Implement searching and sorting concepts for problem solving.	
CO4 Implement the concepts of graph and hashing concepts for problem solving.	
4 TH SEMESTER	
CO1 Design system components for amplitude modulation techniques that meet the specified needs with appropriate consideration relevant to complex analog communication systems	
Communication Analyze system components and calculate the corresponding values for nonlinear communication systems that meet the specified needs with appropriate consideration relevant to complex analog communication systems.	J
CO3 Analyze a stereo and a multiplexed system as applied to audio, analog or 78	

		digital communication respectively.	
	CO4	Analyze noise parameters and compare signal to noise ratio for analog modulation techniques reaching substantiated conclusions on the performance of analog communication systems.	78%
EC402 Analog	CO1	Understand the characteristics of diodes and transistors and design and analyse various rectifier and amplifier circuit.	75%
Electronic Circuits	CO2	Understand the functioning of OP-AMP and design OP-AMP based circuits, Oscillators and multivibrators.	75%
EC403 Microprocessor	CO1	Students will be able to do assembly language programming using 8085/8086 and interfacing design of peripherals like I/O, A/D, D/A, Timer etc.	78%
& Microcontrollers	CO2	Students will be able to distinguish and analyze the properties of microcontroller	78%
	CO1	To analyze and identify the Complexity of a problem and compute the recurrence relation.	75%
ESCS401 Design and Analysis of Algorithm	CO2	To analyze the several algorithms design techniques on some certain problems using divide & conquer method, dynamic programming approach, backtracking, greedy method.	75%
	CO3	To understand lower bound theory, graph traversal algorithm, network flow, disjoint set manipulation different method.	75%
	CO4	To design the algorithm of string matching problem, matrix manipulation algorithm.	75%
	CO5	To understand amortize analysis, approximation algorithm, notion of NP-completeness.	75%
	CO1	To develop thorough understanding of the mathematical concepts and theories that underlie numerical methods. This includes topics such as interpolation, differentiation, integration, and linear algebra.	74%
BS M401 Numerical Methods	CO2	Students should be able to analyse a given engineering problem and choose the appropriate numerical method to solve it. This requires an understanding of the strengths and limitations of various numerical techniques.	74%
	CO3	Students should be able to write computer programs to implement numerical algorithms. This includes an understanding of programming languages such as MATLAB, Python, or C++.	74%
	CO4	Students should understand the concept of numerical error and the sources of error in numerical calculations. They should be able to perform error analysis and make appropriate adjustments to improve the accuracy of their numerical solutions.	75%
BS B401 Biology for	CO1	After studying the course, the student will be able to: Describe how biological observations of 18th Century that lead to major	81%

		discoursies and Comment that also if action new action at what his low is all	
Engineer		discoveries and Convey that classification per se is not what biology is all about but highlight the underlying criteria, such as morphological, biochemical and ecological	
	CO2	Highlight the concepts of recessiveness and dominance during the passage of genetic material from parent to offspring Convey that all forms of life have the same building blocks and yet the manifestations are as diverse as one can imagine	81%
	CO3	Classify enzymes and distinguish between different mechanisms of enzyme action. Identify DNA as a genetic material in the molecular basis of information transfer.	81%
	CO4	Analyse biological processes at the reductionistic level Apply thermodynamic principles to biological systems.	81%
	CO5	Identify and classify microorganisms.	81%
	CO1	Organize/Design the experiment related to Analog Communication Lab.	81.25%
EC491 Analog	CO2	Generate experimental Data related to Analog Communication Lab.	81.30%
Communication Lab	CO3	Conduct actual experiment related to Analog Communication Lab.	82.22%
	CO4	Analyze data and draw conclusion related to Analog Communication Lab.	81.48%
	CO5	Analyze with proper experimental data and graphs and communicate effectively related to Analog Communication Lab.	81.85%
	CO1	Organize/Design the experiment related to Analog Electronic Circuit Lab.	83.14%
EC492 Analog	CO2	Generate experimental Data related to Analog Electronic Circuit Lab.	83.14%
Electronic Circuit	CO3	Conduct actual experiment related to Analog Electronic Circuit Lab.	83.14%
	CO4	Analyze data and draw conclusion related to Analog Electronic Circuit Lab.	83.14%
	CO5	Analyze with proper experimental data and graphs and communicate effectively related to Analog Electronic Circuit Lab.	83.14%
EC493	CO1	The knowledge of basic microcomputer system and the architecture as well as assembly language programming of 8085 Microprocessor to solve engineering problems related to design system based on these processors in ECE.	93.8%
Microprocessor & Microcontroller	CO2	The knowledge of architecture and assembly language programming of 8051 microcontroller and the architecture of PIC to solve engineering problems related to design system based on these processors in ECE	93.7%
Lab	CO3	The knowledge of architecture and assembly language programming of 8086 Microprocessor to solve engineering problems related to design system based on these processors in ECE.	93.5%
	CO4	The knowledge of memory and peripheral interfacing devices to solve engineering problems related to design of I/O and memory interfacing of Microprocessor and Microcontroller Lab based system in ECE.	93.7%

	005	Analyze with proper experimental data communicate effectively related to	02.00/
	CO5	Microprocessor and Microcontroller Lab.	93.8%
	CO1	Students would develop deep understanding of numerical algorithms, including interpolation, differentiation, integration, and linear algebra, and how these algorithms can be implemented in C.	61%
BS-M(CS)491 Numerical	CO2	Students would be able to write computer programs in C to implement numerical algorithms. This requires an understanding of the syntax and features of C programming language.	61%
Method Lab.	CO3	Students would develop an understanding of programming concepts such as data structures, control structures, functions, and file handling in C, and how these concepts can be used to implement numerical algorithms.	61%
	CO4	Students would be able to identify and fix errors in C programs, including runtime errors, syntax errors, and logical errors. They should also understand the importance of error handling in numerical computations.	61%
		5 TH SEMESTER	
	CO1	Understand the basic mathematical concepts related to electromagnetic vector fields.	70%
EC501	CO2	Characterize uniform plane wave and calculate reflection and transmission of waves at media interface.	70%
Electromagnetic Waves	CO3	Understand characteristics and wave propagation on high frequency transmission lines, carryout impedance transformation on transmission line and use sections of transmission line sections for realizing circuit elements.	70%
	CO4	Analyze wave propagation on metallic waveguides in modal form.	70%
	CO5	Understand principle of radiation and radiation characteristics of an antenna.	70%
	CO1	learn how computers work and know basic principles of computer's Working procedure.	70
EC502 Computer	CO2	Analyze the performance of computers.	70
Architecture	CO3	Know how computers are designed and built.	70
	CO4	Understand issues affecting modern processors (caches, pipelines etc.)	70
EC503	CO1	Apply the fundamental knowledge of probability theory and random processes for the solution of complex engineering problems related to digital communication techniques.	64
Digital Communic ation &	CO2	Analyze signal and system parameters using the methods of vector algebra reaching substantiated conclusions on digital communication techniques.	64
Stochastic Process	CO3	Design solution for baseband transmission techniques as applicable to digital communication	64

	1		- 1
	CO4	Design solution for digital carrier modulation techniques as applicable to electronics and Communication Engineering	64
EC504	CO1	Appling sampling theorem students can able to construct/convert continuous time signal/analog into digital sequence and gain the knowledge from time to frequency domain conversion like DTFT,DFT.	68%
Digital Signal Processing	CO2	Student can able to design and implement different types of digital filters(both FIR and IIR) from analog prototype filter using the knowledge of filter transformation(Likely Impulse invariant and Bilinear transform) in different form such as direct form-I, form-II, cascade and parallel etc.	68%
	CO3	They can able to process digital signals and can also design Digital system/Digital signal Processor by setting proper Algorithm onto FPGA and writing Assembly level program.	68%
PEEC505A Program	CO1	Understand various aspects of nano-technology and the processes involved in making nano components and material and appropriate use in solving practical problems	68%
Elective1 Nano Electronics	CO2	Appropriate use of different nano-technology for life-long learning.	68%
	CO1	Understand the radiation pattern of dipole antenna	83%
EC591	CO2	Understand the radiation pattern of Folded dipole antenna.	83%
Electromagnetic Wave Lab	CO3	Understand the radiation pattern of 3 element yagi -uda antenna .	83%
	CO4	Analyze the beam width, gain and radiation pattern of a 3-element,5 element and 7 element yagi- uda antenna.	83%
	CO5	Evaluate the radiation characteristics of a Pyramidal horn antenna	83%
	CO1	Apply the fundamental knowledge of probability theory and random processes for the solution of complex engineering problems related to digital communication techniques.	93%
EC592 Digital	CO2	Analyze signal and system parameters using the methods of vector algebra reaching substantiated conclusions on digital communication techniques.	93%
Communication Lab	CO3	Design solution for baseband transmission techniques as applicable to digital communication	93%
	CO4	Design solution for digital carrier modulation techniques as applicable to electronics and Communication Engineering	93%
	CO1	Organize/Design the experiment related to Digital Signal Processing Lab.	94.8
EC593	CO2	Generate experimental Data related to Digital Signal Processing Lab.	94.8
Digital Signal Processing Lab.	CO3	Conduct actual experiment related to Digital Signal Processing Lab.	94.6
	CO4	Analyze data and draw conclusion related to Digital Signal Processing Lab.	94.9
	CO5	Analyze with proper experimental data and graphs and communicate effectively related to Digital Signal Processing Lab.	94.8

		6 TH SEMESTER	
EC601 Control System	CO1	Characterize a system and find its steady state behavior.	64%
Instrumentation	CO2	Investigate stability of a system using different test related to control system.	64%
EC602 Computer Network	CO1	Familarization with the fundamental knowledge of data communication and networks and apply this knowledge to investigate the error in the communication network and analyze the errors using different error correcting codes.	64%
	CO2	Analyze the internetworking devices and investigate different addressing and subnetting protocols to investigate proper process to process delivery.	64%
PEEC603D Information	CO1	Recognize the notion of information in the quantitative sense to measure the quantity of information for transmission of data and apply this basic knowledge to calculate channel capacity and probability distribution for real time transmission systems.	65%
Theory & Coding	CO2	Assess the fundamental coding theorem for encoding and decoding the information and develop the different techniques for construction of error correction codes .	65%
	CO3	Evaluate the rate and error probabilities in different coding techniques to implement the cost effective system.	65%
	CO1	differentiate between structures oriented programming and object oriented programming.	70%
OEEC604C Object Oriented	CO2	use object oriented programming language like C++ and associated libraries to develop object orientedprograms.	70%
Programming	CO3	understand and apply various object oriented features like inheritance, data abstraction, encapsulation andpolymorphism to solve various computing problems using C++ language.	70%
	CO4	apply concepts of operator-overloading, constructors and destructors	70%
	CO5	apply exception handling and use built-in classes from STL.	70%
EC401	CO1	Characterize a system and investigate stability of the system in time and frequency domain with different method related to Control and Instrumentation Lab.	90%
EC691 Control System	CO2	Design various controllers related to Control and Instrumentation Lab.	90%
& Instrumentation Lab.	CO3	Conduct experimental set up with CRO ,Instrumentation Amplifier knowing their functional details related to Control and Instrumentation Lab.	90%
	CO4	Conduct actual experiment related to Control System and Instrumentation Lab.	90%
	CO5	Analyze with proper experimental data and graphs and communicate effectively related to Control System and Instrumentation Lab.	90%
EC692 Computer	CO1	Understand the basic concept related to NIC installation and configuration. Apply the knowledge of IPC message queue.	95%
Computer Network	CO2	Remembering and understanding the networking cables, switches, hubs and	95%

Lab		connectors.	
Lab	GOA	Understand multicast and broadcast socket and analyze TCP/UDP socket	0.50/
	CO3	·	95%
	GO 4	programming.	0.50/
	CO4	Applying the knowledge of socket programming, analyze prototype multithreaded server.	95%
	~~-		0.7
	CO5	Understand the knowledge of data link layer flow control mechanism and apply this knowledge for the error control.	95%
EC(01	CO1		
EC681	CO1	Formulation of a problem statement either from rigorous literature survey or from the requirements raised need to be analysed.	90%
Electronic Design	CO2	Design, implement and test the photo type/algorithm in order to solve the	90%
	002	problem statement.	, , , ,
Mini Project Lab		Write comprehensive report on Mini Project work.	90%
	CO3		
	•	7 TH SEMESTER	
	CO1	Visualize the architecture of satellite systems as a means of high speed,	5 200
EC701B		high range communication system.	73%
Satellite	002	State various aspects related to satellite systems such as orbital	73%
Communication	CO2	equations, sub-systems in a satellite, link budget, modulation and	
		multiple access schemes.	
	CO3	Solve numerical problems related to orbital motion and design of link	73%
	003	budget for the given parameters and conditions.	
EC702C	CO1	Analyze and classify neural networks and its implementation algorithms.	71%
Neural Network	CO2	Apply suitable algorithms on different cases.	71%
and	CO2	Appry suitable algorithms on different cases.	/ 1 /0
Fuzzy Logic	CO3	Apply fuzzy logic and neural networks.	71%
Control			
	CO4	Analyze the applications of Neural Network and Fuzzy logic in image	71%
		processing.	
EC703A		Understand the internal structure, purpose and application of Embedded	
20,0011	CO1	system.	74%
Embeded System			
	CO2	Apply the concept of Embedded firmware in design of Embedded System.	- 404
	002		74%
		design good web pages using different tags, tables, forms, frames and	
	CO1	style sheets supported by HTML and implement, compile, test and run	
		Java programs, comprising more than one class, to address a particular	73%
OEEC704A		software problem.	
OEEC/04A	CO2	demonstrate the ability to employ various types of selection	73%
Web Technology		statements and iteration statements in a Java program.	
	CO3	be able to leverage the object-oriented features of Java language using	73%
		abstract class and interface.	
	CO4	be able to handle errors in the program using exception handling	73%
		techniques of Java.	
	CO5	design applets as per the requirements with event handling facility.	73%
T C=0.1		Apply knowledge(fundamental & specialized) to understand the real life	90
EC781	CO1	problem in the related field.	70
Industrial		problem in the related field.	
Training	CO2		73
& Project	332	Understand the design and implementation aspects of engineering	, 5

OEEC704A		system/components.	
	CO3	Work individually and also in a group.	73
	CO4	Communicate the details of training through Training Report, Presentation and Viva-Voce.	73
	CO5	Understand implication of engineering solutions in social and environmental perspective.	73
	CO1	Formulate the problem.	92
	CO2	Develop or design a solution of the problem.	92
	CO3	Build up project prototype or model in hardware or software.	92
	CO4	Analyze the experimental/collected data.	92
	CO5	Do investigation/research in the problem area.	92
T-C=04	CO6	Apply fundamental and specialize knowledge in the area of the problem.	92
EC782 Project Stage 1	CO7	Self learn new methods, tools and techniques.	92
	CO8	Apply modern tools and techniques.	92
	CO9	Work individually and also in team.	92
	CO10	Communicate the details and findings of the project through project report, presentation, Viva-Voce and paper presentation, if any.	92
	CO11	Apply project management and economic knowledge	92
	CO12	Identify implications of the project in society and environment.	92
		8 TH SEMESTER	
PEEC 801B Fibre Optics	CO1	Learn the properties of light in different medium and utilize the knowledge in different types of fibres for optical fibre communication system, and also the corresponding losses of each kinds of fibres.	83
Communication	CO2	Learn the working of all types of optical source and detectors for signal modulation and demodulation respectively.	83
	CO1	Understand the practical situations where mixed signal analysis is required.	74
PEEC802C	CO2	Analyze and handle the inter-conversions between signals.	74
	CO3	Design systems involving mixed signals.	74
OEEC804C	CO1	Understand the modern view of AI as the study of agents that receive precepts' from the environment and perform actions.	75
	CO2	Demonstrate awareness of the major challenges facing AI and the complex of typical problems within the field.	75
			l

	•		
	СОЗ	Exhibit strong familiarity with a number of important AI techniques, including in particular search, knowledge representation, planning and constraint management.	75
	CO4	Asses critically the techniques presented and to apply them to real world problems.	75
	CO1	Formulate the problem.	95
	CO2	Develop or design a solution of the problem.	95
	CO3	Build up project prototype or model in hardware or software.	95
	CO4	Analyze the experimental/collected data.	95
	CO5	Do investigation/research in the problem area.	95
EC881	CO6	Apply fundamental and specialize knowledge in the area of the problem.	95
Project II	CO7	Self learn new methods, tools and techniques.	95
	CO8	Apply modern tools and techniques.	95
	CO9	Work individually and also in team.	95
	CO10	Communicate the details and findings of the project through project report, presentation, Viva-Voce and paper presentation, if any.	95
	CO11	Apply project management and economic knowledge	95
	CO12	Identify implications of the project in society and environment.	95
	CO1	Demonstrate the capability to formulate the problem.	95
	CO2	Demonstrate the capability to develop or design a solution of the problem.	95
	CO3	Demonstrate the capability to build up project prototype or model in hardware or software.	95
	CO4	Demonstrate the capability to analyze the experimental/collected data.	95
EC882	CO5	Show the capability to demonstrate the research based knowledge	95
Grand Viva	CO6	Demonstrate the capability to apply fundamental and specialize knowledge in the area of the problem.	95
	CO7	Demonstrate the capability for self learning new methods, tools and techniques.	95
	CO8	Demonstrate the capability to apply modern tools and techniques.	95
	CO9	Demonstrate the capability to work individually and also in team.	95
	CO10	Demonstrate the capability to communicate in details and present a topic related to Electronics & Communication Engineering.	95

CALCUTTA INSTITUTE OF ENGINEERING AND MANAGEMENT DEPARTMENT OF INFORMATION TECHNOLOGY CO ATTAINMENT REPORT 2021-2022

		FIRST SEMESTER	
PAPER CODE (Name)	CO No.	Course Outcomes	Attained ()
	CO1	Apply the knowledge of simple harmonic motion (ideal and real cases) and basic concepts of Mechanics for the solution of complex problems.	81
	CO2	Utilize the knowledge of vector calculus and different coordinate system for the solution of complex problems.	72
BS PH-101 (Physics-1)	CO3	Apply the knowledge of physical optics (interference, diffraction, polarization) and LASER to solve different complex problems	75
	CO4	Apply the knowledge of dielectric and magnetic properties of materials to interpret different complex systems.	83
	CO5	Utilize the knowledge of Quantum Physics to analyze a complex engineering problem.	69
	CO6	Apply the knowledge statistical mechanics to solve complex problems.	79
BS-M(101)	CO1	To understand the concept and techniques of differential and integral calculus.	75
$\begin{array}{c} \textbf{(Mathematics} \\ \textbf{I(A))} \end{array}$	CO2	To understand the domain of application of MVT,to engineers problem.	90
	CO3	To learn the concept of eigen values, eigen vectors, diagonalisation	72
	CO 1	To understand and analyze basic electric and magnetic circuits.	70
ES-EE101	CO 2	To study the working principles of electrical machines and power converters.	75
(Basic Electrical Engineering)	CO 3	To introduce the components of low voltage electrical installations.	70
BS PH-191 (Physics-I Laboratory)	CO1	Organize/design the experiment related to various systems and interpret the physical properties of material.	72
• /	CO2	Generate experimental Data related to electrical and magnetic properties.	80

	CO3	Conduct actual experiment related to optical phenomena.	78
	CO4	Analyze data and draw conclusion related to quantum physics.	85
	CO5	Analyze with proper experimental data and graphs and communicate effectively.	75
	C0 1	Gather knowledge about the safety precautions and the do's-don'ts while dealing with electrical equipments.	75
ES-EE 191	CO 2	Study about the different electrical instruments and devices through their input-output relationship.	65
(Basic Electrical Engineering Laboratory)	CO 3	Organize different electrical instruments like ammeter, voltmeter, wattmeter and different electrical devices like transformer, rheostat, etc. to observe the output through incandescent lamps.	70
	CO1	Utilize the concept of fitting shop and make typical jobs.	70
ES ME 192 (Workshop /Manufacturing Practices)	CO2	Learn the basics of carpentry shop and utilize the concept to make typical jobs.	70
	CO3	Develop the concept of various machining processes and make use of Lathe, Shaping and Milling machine to construct typical jobs.	65
	CO4	Develop the concept of metal joining process and utilize the concept of welding to join to metal plates.	70

		THIRD SEMESTER	
PAPER CODE (Name)	CO No.	Course Outcomes	Attained(%)
ESC301	CO1	Convert various number system and apply logic gates, Boolean algebra and K-Map to design digital circuits.	60
(Analog & Digital Electronics)	CO2	Design the digital combinational circuits likes decoders, encoders, multiplexers amd demultiplexers, half adder, full adder and compare their performance to optimize production cost and also develop sequential digital circuits like flipflop, register, counter to design memory device.	62
	CO3	Design and analyse various amplifier circuit, multivibrators, ROM, RAM, FPGA,TTL,CMOS and ECL	55

PCC-CS301 (Data Structure &	CO1	Differentiate how the choices of data structure & algorithm methods impact the performance of program	79
	CO2	Solve problems based upon different data structure & also write programs	83
Algorithm)	CO3	Identify appropriate data structure & algorithmic methods in solving problem	80
	CO4	Discuss the computational efficiency of the principal algorithms for sorting, searching, and hashing.	82
	CO5	Compare and contrast the benefits of dynamic and static data structures implementations	71
	CO1	Analyze the relevance of classical and modern problems of computer design and construct machine code instructions.	70
PCC CS-302 (Computer Organization)	CO2	Design logical expressions and corresponding integrated logic circuits for a variety of problems including the basic components of a CPU such as adders, multiplexers, ALU using fixed-point and floating-point addition, subtraction, multiplication & division algorithm.	75
Organization)	CO3	Analyze hierarchical memory system including cache memories and virtual memory and Calculate their Cost, Speed and Capacity.	70
	CO4	Apply the knowledge of various micro- programmed instructions using the concept of pipelining for designing Control Unit and accessing I/O operation.	65
BSC-301 (Mathematics –	CO1	Express a logic sentence in terms of predicates, quantifiers, and logical connectives	70
III(Differential Calculus))	CO2	Apply the rules of interference and proof by contradiction, mathematical induction.	72
	CO3	Use tree and graph algorithm to solve the problems.	75
	CO4	Apply Boolean function ,and simplify expression	70
	CO5	To apply Boolean algebra to solve engineering problems	74
		Student will able to englyze the seemenic	
HSMC 301 (Economics for Engineers(Humani ties -II))	CO1	Student will able to analyze the economic decisions making, engineering costs & estimation and classification of costs by applying the knowledge of estimating models. Student will develop an understanding of cash flow, rate of return analysis in different socio-environmental situations.	58

	CO2	Analysis of inflation and price change will be done to the students for their proper understanding of the price indexes in economic analysis. Effect of inflation & deflation is analyzed to them to remember and if required to apply in real-life scenarios.	59
	CO3	Illustration of types of property, depreciation and expenses and its impact on business, for better understanding of the business environment and apply the knowledge of it.	61
		Organize/design the experiment related to analog	
	CO1	electronic circuit lab.	70
ESC391 (Analog & Digital Electronics)	CO2	Design the digital combinational circuits likes decoders, encoders, multiplexers amd demultiplexers, half adder, full adder and compare their performance to optimize production cost.	65
	CO3	Develop sequential digital circuits like Flip-Flop, Registers, Counters to design memory devices.	70
PCC-CS391	CO1	Apply the knowledge of linear data structure to implement Linked list, Stack, Queue, Array.	85
(Data Structure &	CO2	Apply the knowledge of nonlinear data structure to implement different types of tree.	80
Algorithms)	CO3	Implement different types of searching and sorting techniques in data structure.	82
	CO1	Analyze the behaviour of logic gates	80
PCC CS-392	CO2	Design combinational circuits for basic components of computer system and applications.	80
(Computer	CO3	Design arithmetic circuit for computer system.	80
Organisation)	CO4	Design Arithmetic logic units and different types of memory blocks.	80
PCC-CS393 (IT Workshop (Sci Lab/ MATLAB/ Python/ R))	CO1	To master an understanding of scripting & the contributions of scripting languages	83
	CO2	Design real life problems and think creatively about solutions	85
	CO3	Apply a solution in a program using Python.	82
	CO4	To be exposed to advanced applications of mathematics, engineering and natural sciences to program real life problems.	74

		FIFTH SEMESTER 2022	
	CO1	Understand basic SW engineering methods and practices, and their appropriate application.	85
	CO2	Understand u of software process models such as the waterfall and evolutionary models.	80
ESC-501 (Software Engineering)	CO3	Students will be able perform various life cycle activities like Analysis, Design, Implementation, Testing and Maintenance.	90
	CO4	Students will be able to know various processes used in all the phases of the product.	70
	CO5	Students can apply the knowledge, techniques, and skills in the development of a software product.	65
	CO1	Understand given grammar specification develop the lexical analyser	90
PCC-CS501	CO2	Design a given parser specification design top- down and bottom-up parsers	85
(Compiler Design)	CO3	Develop syntax directed translation schemes	80
	CO4	Develop algorithms to generate code for a target machine	75
	G0.1		
	CO1	Analyse processes and threads. Develop algorithms for process scheduling for a given specification of CPU utilization, Throughput, Turnaround Time, Waiting Time, Response time.	70
PCC-CS502 (Operating Systems)	CO3	Formulate a given specification of memory organization develop the techniques for optimally allocating memory to processes by increasing memory utilization and for improving the access time. Design and implement file management system.	65
	CO4	Categorize a given I/O devices and OS (specify) develop the I/O management functions in OS as part of a uniform device abstraction by performing operations for synchronization between CPU and I/O controllers.	60
PCC-CS503 (Object Oriented Programming)	CO1	Understand Abstract Data Types and their implementations using abstraction functions to document them.	70

	CO2	Apply the features of object-oriented design to implement encapsulation, polymorphism, inheritance, and composition of systems based or object identity.	n 80
	CO3	Name and apply some common object-oriented design patterns and give examples of their use.	65
	CO4	Design applications with an event-driven graphical user interface.	80
	CO1	Student will able to analyze the organisation structure, organizational culture and climate by applying the knowledge of factors affecting then	59
HSMC 501 (Introduction to Industrial Management	CO2	Analysis of determination of critical path on network will be done to the students for their proper understanding of determination of floats, material management, storekeeping- functions.	61
(Humanities – III))	CO3	Illustration of production planning and control, value analysis and its impact on business, for better understanding of the recent trends in IM and apply the knowledge of it.	62
		Apply the good programming skills to	
	CO1	formulate the solutions for computational problems.	60
	CO2	Design and develop solutions for informed and uninformed search problems in AI.	70
PEC-IT501B (Artificial	CO3	Demonstrate and enrich knowledge to select and apply AI tools to synthesize information and develop models within constraints of application area.	75
Intelligence)	CO4	Develop a minor project in multidisciplinary areas to demonstrate team work through reports and presentation.	70
	CO5	To design and develop an Expert System that operates in a realistic problem domain and communicate effectively in a team or individual and prepare reports.	60
	CO1	Demonstrate concepts of parallelism in	70
PEC-IT501C (Advanced	CO1	hardware/software. Discuss memory organization and mapping	70
Computer	CO2	techniques.	85
Architecture)	CO3	Describe architectural features of advanced processors.	75

	CO4	Interpret performance of different pipelined processors.	70
	CO5	Development of software to solve computationally intensive problems	65
MC-CS501 (Constitution of India)	CO1	To be able to identify the fundamental rights and duties, Directive Principles of State Policy in the Constitution of India by assessing the functions of various governmental administrations (Centre & State) and the Election Commission	72
	CO1	To understand the software engineering methodologies involved in the phases for project development.	85
ESC-591 (Software	CO2	To gain knowledge about open-source tools used for implementing software engineering methods.	90
Engineering)	CO3	To exercise developing product-startups implementing software engineering methods.	60
	CO4	Learn simple optimization techniques.	75
200 00503	CO1	Design and solve complex UNIX programs.	60
PCC-CS592 (Operating	CO2	Apply the knowledge of process and threads.	70
Systems)	СОЗ	Design and formulate inter process communication through programming.	65
PCC-CS593	CO1	Implement features of object-oriented design such as encapsulation, polymorphism, inheritance, abstraction.	93
(Object Oriented Programming)	CO2	Implementing multithreading concept in object oriented programming.	92
	СОЗ	Design applications with an event-driven graphical user interface.	95

SEVENTH SEMESTER 2022				
PEC-IT701C (Cloud Computing)	CO1	Explain the core concepts of the cloud computing paradigm, Cloud classification, Characteristics of Cloud Computing, different cloud models	85	
	CO2	Discuss concepts of Abstraction and Virtualization technologies, Load Balancing, Hypervisors, compare different service models	75	

	CO3	Lifecycle management of cloud services, Concepts of Cloud Security	65
	CO4	Discuss basic concept of Service Oriented Architecture, Applications in the Cloud, Cloud-based Storage	70
PEC-IT702A (Multimedia Technology)	CO1	Apply the knowledge of the diverse functions of Multimedia systems and its related hardware and software for the solution of problem related to Information Technology.	77
	CO2	Apply the knowledge of text, audio, image and video file formats for enhancement of the text, audio, image and video with using text, audio, image and video processing tools for the solution of a complex problem related to text, audio, image and video in the field of Information Technology.	76.
	CO3	Able to use various types of multimedia data storage devices for storage & retrieval of multimedia data.	73
	CO4	Design different types of multimedia applications like video-on-demand, video conferencing, digital libraries and other industrial applications.	72
OEC-IT701C (Soft Skill & Interpersonal Communication)	CO1	Students will be able to define the significance of soft skills by recalling relevant terminology and concepts from the syllabus, as assessed by a multiple-choice examination.	83
	CO2	Students will be able to evaluate their own beliefs, values, and attitudes in order to set goals and engage in self-discovery activities, as demonstrated by a written reflection essay.	81
	CO3	Students will be able to apply strategies for developing positive thinking, driving out negativity, and enhancing motivation levels in order to achieve personal and professional goals, as demonstrated through a group project and presentation.	74
	CO4	Students will be able to create and communicate effective messages and interpersonal relationships in a corporate context, as demonstrated by a formal report and presentation on a business scenario.	68

HSMC 701 (Project Management and Entrepreneurship)	CO1	Student will able to analyze the concept of innovation and entrepreneurship, contributions of entrepreneurs to the society, risk-opportunities perspective by applying the knowledge of factors affecting them.	58
	CO2	Analysis of project management, issues and problems in project management, project life cycle - initiation / conceptualization phase, determination of project feasibility studies will be done to the students for their proper understanding of social cost benefit analysis.	59
	CO3	Identification and illustration of the critical path and its significance, types of floats and slacks and its impact on business, for better understanding of the recent trends and apply the knowledge of it.	60
PROJ-IT 781 (Project - II)	CO1	To survey the literature; Identify and classify the requirements for the solution of complex engineering problems.	77
	CO2	To define the requirements of the project by proper analysis and interpretation of data and processes supported by standard documentation.	78
	CO3	To analyze the processes by mapping requirements in to Use case diagram(s)/ Data Flow Diagram(s)/ Algorithm(s)/ User-Interface design/ Entity Relationship Diagram(s) etc.	80
	CO4	To design behaviour of the application with modular programming and program flowchart/ class diagrams and sequence diagrams, etc.,following standard guidelines.	81
	CO5	To estimate project metrics like size, effort and cost, reliability and quality, etc and plan project development schedule using PART and GNATT charts.	82
	CO6	To justify the project work with technical documentation, presentation, and discussions as a group to share knowledge.	82
		SECOND SEMESTER	
PAPER CODE (Name)	CO No.	Course Outcomes	Attained (%)

	CO1	To be able to use the correct vocabulary in order to express oneself in English properly	62
	CO6	Apply the programming concepts for manipulating strings in C and file handling.	60
	CO5	Use pointers for direct memory access and manipulation in C; and how to change the memory address contained within a pointer;	70
	CO4	Analyze how to use arguments and return values and variables from a function.	65
FOR PROBLEM SOLVING)	CO3	Construct arrays using the concept of C programming.	70
ES-CS201 (PROGRAMMING	CO2	Apply logical operators and loops in programming.	60
	CO1	Design Algorithm, flow chart and program in C.	70
	CO4	Able to communicate their findings and results through written reports, and visual display	85
	CO3	Use statistical software and tools to analyze the data.	70
	CO2	Apply probability theory and statistical interference to solve engineering problems.	75
BS-M201 (Mathematics-IIA)	CO1	To understand the concept of basic probability, including sample spaces, events, probability distribution, and conditional probability.	90
		chemical and biochemical reacting systems used in various engineering problems.	
	CO5	Apply the knowledge of structure, stability and reactivity of organic molecular species in order to gain a clear insight into the mechanism of	82
BS CH-201 (CHEMISTRY-I)	CO4	Rationalise periodic properties (ionization potential, electro negativity, oxidation states) for various engineering applications.	81
	CO3	Distinguish the ranges of the electromagnetic spectrum used for exciting different molecular energy levels in various spectroscopic techniques.	78
	CO2	Rationalise bulk properties and processes using thermodynamic consideration for various engineering applications.	72
	CO1	Analyse microscopic chemistry in terms of atomic and molecular orbitals and intermolecular forces to solve different engineering problems.	69

	CO3	To be able to describe , discuss , and interpret reading input in English	75
	CO4	To be able to demonstrate that one can express oneself in English through writing	64
	CO1	Organize/Design the experiment related to Chemical Science as applicable in various Engineering problems.	72
	CO2	Generate experimental Data related to Chemical Science as applicable in complex problems.	78
BS CH-291 (CHEMISTRY-I)	CO3	Conduct actual experiment related to Chemical Science as applicable in different engineering application.	83
	CO4	Analyze data and draw conclusion related to Chemical Science as applicable in various engineering problems.	76
	CO5	Analyze with proper experimental data and graphs and communicate effectively related to Chemical Science as applicable in different engineering fields.	84
	CO1	To formulate the algorithms for simple problems	90
ES-CS291 (PROGRAMMING	CO2	To translate given algorithms to a working and correct program	90
FOR PROBLEM SOLVING)	CO3	To be able to correct syntax errors as reported by the compilers	80
-	CO4	To be able to identify and correct logical errors encountered at run time	85
	CO5	To be able to write iterative as well as recursive programs	90
	CO6	To be able to represent data in arrays, strings and structures and manipulate them through a program	80
	CO7	To be able to declare pointers of different types and use them in defining self-referential structures.	75
	CO8	To be able to create, read and write to and from simple text files	80
ES-ME291	CO1	Develop basic knowledge of engineering drawing including lettering, dimensioning and scaling system.	75
(Engineering Graphics & Design)	CO2	Develop basic knowledge on geometrical constructions and curves and apply the knowledge to solve real life problems.	70
	CO3	Learn the basic concept of orthographic and isometric projections related to design of engineering.	65

	CO4	Comprehend the basic knowledge of development of different types of surfaces and analyse their real-life applications.	65
	CO1	To be able to describe , discuss , and interpret the listening input in English	55
HM-HU291 (LANGUAGE	CO2	To be able to demonstrate that one can express oneself in English through speaking	54
LABORATORY)	CO3	To be able to describe, discuss, and interpret reading input in English	77
	CO4	To be able to demonstrate that one can express oneself in English through writing	67
		FOURTH SEMESTER	
PAPER CODE (Name)	CO No.	Course Outcomes	Attained (%)
	CO1	To understand the basic concept of set, relation, mapping	
			75
DGG GG404	CO2	To understand the POSET,Lattice	00
PCC-CS401	CO3	To understand the basic concept of number theory.	80
(DISCRETE MATHEMATICS)	COS	To understand the basic concept of number theory.	75
WATHEWATICS)	CO4	To understand graphs,cycle,trail,path	13
		To understand graphs, cycro, transpatir	80
	CO5	To apply the graph colouring, chromatic number to solve	;
		engineering problems.	75
PGG GG 404	CO1	To learn the basics of stored program concepts.	75
PCC-CS 402	CO2	To learn the principles of pipelining	85
(COMPUTER ARCHITECTURE)	CO3	To learn mechanism of data storage To distinguish between the concepts of serial, parallel,	80
ARCHITECTURE)	CO4	pipeline architecture	70
		pipenne meintecture	
	CO1	Familiarize with formal notation for strings, languages and machines and Design finite automata to accept a se of strings of a language.	
PCC-CS403 FORMAL LANGUAGE AND	CO2	Design hierarchy of formal languages, grammars and machines and Determine whether the given language is regular or not	65
AUTOMATA THEORY	CO3	Design context free grammars to generate strings of context free language and Determine equivalence of languages accepted by Push Down Automata and languages generated by context free grammars	75
	CO4	Distinguish between computability and non- computability and Decidability and undecidability	65
			•
	CO1	For a given algorithms analyse worst-case running time of algorithms based on asymptotic analysis and justify the correctness of algorithms.	
DCC CS404	CO2	Describe the greedy paradigm and explain when an algorithmic design situation calls for it. For a given	75
PCC-CS404 DESIGN &	CO3	problem develop the greedy algorithms. Describe the divide-and-conquer paradigm and explain	70
22010114		20001100 the divide-and-conquer paradigm and explain	70

ANALYSIS		wher	n an algorithmic design situation calls for it.		
ALGORITHM,			ize divide-and-conquer algorithms. Derive an	d	
ALGORITIM,		Synthes	solve recurrence relation.	u	
	CO4	Descr	ibe the dynamic-programming paradigm and	80	
	CO4		when an algorithmic design situation calls for		
			given problems of dynamic-programming.		
	CO5		op the dynamic programming algorithms, and	85	
	000		e it to determine its computational complexity		
	CO6		ven model engineering problem model it usin		
		graph and	d write the corresponding algorithm to solve t	he	
			problems.		
	CO7		n the ways to analyse randomized algorithms	70	
			pected running time, probability of error).		
	CO8		what an approximation algorithm is. Comput		
		the appro	oximation factor of an approximation algorith	m	
			(PTAS and FPTAS).		
	~~:				
	CO1		how biological observations of 18th		
			ead to major discoveries and understand	020/	
			lassification of organisms is based on	82%	
		_	ogical, biochemical or ecological		
	CO2	parameter	the concepts of recessiveness and		
	CO2		the concepts of recessiveness and the during the passage of genetic material	81%	
			ent to offering.	01/0	
BSC 401	CO3				
(BIOLOGY)	003	1	hat all forms of life have the same building d yet the manifestations are diverse.	78%	
(======)	CO4		enzymes and distinguish between different		
			ms of enzyme action and identify DNA as	020/	
			material in the molecular basis of	83%	
			on transfer.		
	CO5	Analyse b	piological processes at the reductionistic		
			apply thermodynamic principals to the	75%	
			l systems.		
	CO6	Identify a	and classify microorganisms.	79%	
3.50 404	CC)1	To apply the knowledge of air	80	
MC 401			pollution in order to develop		
(ENVIRONMENTAL			improved technologies to reduce the		
SCIENCES)			adverse effect of pollution on human health and environment.		
	CC)2	To apply the knowledge of water	82	
	CC)	pollution in order to develop	62	
			improved technologies for controlling		
			water pollution and provide safe and		
			clean drinking water to the society.		
	CC)3	To apply the knowledge of solid waste	84	
			management in order to		
			develop technologies for reducing,		
			develop technologies for reducing, reusing and recycling the waste for the		
			reusing and recycling the waste for the benefit of the society.		
	CC	04	reusing and recycling the waste for the	80	

	CO3		the knowledge of query optimization arms to optimize the execution time of		70
MANAGEMENT SYSTEMS)	CO2		the knowledge of entity relationship ls to design the database for a given requirement specification		75
PCC-CS601 (DATABASE	CO1	S(Co	QL queries for Open source and ommercial DBMS like MYSQL, ORACLE, and DB2		80
	CO1	lang	ply the knowledge of pure query uage to write a query in relational , relational calculus and construct the		00
PAPER CODE (Name)	CO No.		Course Outcomes	At	tained (%)
DADED CORE		SIXT	'H SEMESTER		
	CO5		Implement Graph Traversal Algorit with different examples	hm	60
	CO4		Demonstrate Greedy programmin method with different examples		75
	CO3		Execute Backtracking programmir method with different examples	ng	70
(DESIGN & ANALYSIS ALGORITHM)	CO2		Demonstrate Brunch and Bound programming method with differe example		70
PCC-CS494	CO1		Implement Divide and Conquer programming method with differe examples	nt	85
PCC-CS 492 (COMPUTER ARCHITECTURE)	CO2		Analyze the operational behaviour a applications of various gates, sequer and combinational circuits.		85
	CO1		Practical experience on Xlinx	<u> </u>	95
	CO6		involvement and create social awareness about the important national and international legislations and protocols concerning the protection conservation of environment.		07
	CO5		To identify and solve problems related to noise pollution and create awares among people about its harmful effeand control measures. To foster greater community	ness	88
			complex interrelationships between biotic and abiotic components in different types of eco systems in or to ensure sustainable development a growth.	der and	

				a query.		
			Ar	oply the knowledge of reducing anomalies		
	C	CO4	1-1	during database design.		75
	C	CO5	ir	Understand the transaction atomicity, ensistency, isolation, durability for a given transaction-processing system and explement the isolation property based on concurrency control and serializability of scheduling.		70
	C	CO6	Uı	nderstand different processes to secure the database.		65
	C	CO1	Ill	lustrate of modern network architectures fro design and performance perspective.	om a	70
PCC-CS602 (COMPUTER NETWORKS)	C	CO2		ustify the major concepts involved in wide-a networks (WANs), local area networks (LAI and Wireless LANs (WLANs).		70
	C	CO3	Γ	Derive Topologies for the enhancement of O TCP IP protocol suite.	SI/	75
PEC-IT601 D	C	CO1	E	xplain the fundamentals of digital image and processing.	d its	70
(IMAGE PROCESSING)	C	CO2	Pe	erform image enhancement techniques in sp and frequency domain.	atial	72
ŕ	C	CO3	F	Elucidate the mathematical modelling of imates restoration and compression.	age	80
		O4		Apply the concept of image segmentation		60
	C	CO5		Describe object detection and recognition	1	75
				techniques.		
PEC-IT602D	C	CO1	c	Explain and compare a variety of pattern lassification, structural pattern recognition a pattern classifier combination techniques.	and	60
(PATTERN RECOGNITION)	C	CO2		Summarize, analyze, and relate research in tattern recognition area verbally and in writi	70	
	C	2O3	a	oply performance evaluation methods for pa nd critique comparisons of techniques made the research literature.	e in	75
	C	CO4		oply pattern recognition techniques to real-w problems such as document analysis and recognition.		70
	C	CO5		Implement simple pattern classifiers, classifoly ombinations and structural pattern recognized		60
		CO1		Critically assess existing theory and		75
OEC-IT601B	-	CO2		practice in the field of HRM. Develop an ability to undertake qualitative and quantitative research.		60
(HUMAN RESOURC DEVELOPMENT AN ORGANIZATIONAL	ID	CO3		Apply knowledge about qualitative and quantitative research to an independently constructed piece of work.		70
BEHAVIOR)		CO4		Respond positively to problems in unfamiliar contexts.		75
		CO5		Identify and apply new ideas, methods		60

		and way of thinking.	
	CO6	Demonstrate competence in communicating and exchanging ideas in a group context.	60
		,	
	CO1	Understand research problem formulation.	78
	CO2	Analyze research related information	82
	CO3	Follow research ethics	67
PROJ - CS601 (RESEARCH METHODOLOGY)	CO4	Understand that today's world is controlled by Computer, Information Technology, but tomorrow's world will be ruled by ideas, concepts, and creativity.	79
	CO5	Understanding that when IPR would take such an important place in the growth of individuals & nations, it is needless to emphasize the need for information about Intellectual Property rights to be promoted among students in general & engineering in particular.	75
	CO6	Understanding that IPR protection provides an incentive to inventors for further research work and investment in R & D, which leads to creation of new and better products, and in turn brings about economic growth and social benefits.	85
PCC-CS691 (DATABASE MANAGEMENT SYSTEMS)	CO1	Apply the knowledge of pure query language to write a query in relational algebra, relational calculus and construct the SQL queries for Open source and Commercial DBMS like MYSQL, ORACLE, and DB2.	80
	CO2	Apply the knowledge of entity relationship models to design the database for a given requirement specification.	75
	CO3	Apply the knowledge of query optimization algorithms to optimize the execution time of a query.	70
	CO4	Apply the knowledge of reducing anomalies during database design.	75
	CO5	Understand the transaction atomicity, consistency, isolation, durability for a given transaction-processing system and implement the isolation property based on concurrency control and serializability of scheduling.	70
	CO6	Understand different processes to secure the database.	65
	001	Tindone 14 4	00
	CO1	Understand the structure and	90

PCC-CS692 (COMPUTER NETWORKS)		organization of computer networks; including the division into network layers, role of each layer, and relationships between the layers, various network command, and network device.	
	CO2	Understand IPAddressing, Subnetting.	90
	CO3	Understand of transport layer concepts and protocol design; including connection oriented and connection-less models, techniques to provide reliable data delivery and algorithms for congestion control and flow control.	90
	CO4	Understand of Application layer concepts and protocol design.	80

MBA Department CO ATTAINMENT 2021-2022

Subject Code &	COs	Attainm
Subject Name		ent
MB 101 Managerial Economics (Micro)	CO1:To explain and demonstrate the different types of markets and features – Price determination under different markets along with concepts like Law of Variable Proportions and Returns to S Producers equilibrium with the help of Isoquants, Expansion path Elasticity of Substitution.	
	CO2: To acquire knowledge and develop ideas of these concepts in detail and analyse the applicability in real life situations.	85%
MB 102 ORGANIZATIONAL BEHAVIOUR	CO1: The student will be able to evaluate and analyse the various facets of organisationbehaviour including personality, perception, and attitude and job satisfaction.	92%
	CO2: The student will be able to understand the various organisation theories and analyse group behaviour, conflict, change and leadership concepts.	83%
MB 103 Business Communication	CO 1 To demonstrate competence inverbal business communication & "Process of Communication in an organization"	83%
	CO2 To demonstratecompetenceinthefundamentalsofbusiness writing & willenablethestudentstoaugmenttheirreportwritingskills	84%
	CO3 Itwillhelpthemtoidentifythe Barriers of Communication and measures to overcome.	83%
	CO4 Itwillenable themtoapply the expertise to frame professional cover letter and professional resume.	82%
MB 104	CO1: Student will develop an understanding of different conditions & warranties, the passing of ownership rights by applying the knowledge of the Sale of goods Act and different types of negotiable instruments in different socio environmental situations.	80%
	CO2: Analysis of companies formation, memorandum, articles, and prospectus will be done to the students for their proper understanding of the Companies Act. Consumer protection act is analyzed to them for	81%

	them to remember and if required to apply in real-life scenarios. Illustration of inflation and its impact on business, unfair	
MB 105	trade practice for better understanding of the business CO1 Students will be able to contemplate the ethical standards to be maintained	85%
	in professional set ups. CO2 Students will be able to analyze Indian values related to business enterprises and merge	84%
	them with relevant global concepts. CO3 Students will be able to work comfortably in the professional world.	86%
	CO4 Students will be able to emerge as successful Managers/ leaders and lead a bright life.	84%
MB 106	CO1 Understanding the concept of business or industry related operational problems and then applying the knowledge Operations Research to solve it.	
	CO2 Understanding the concept of Probability and Statistics to analyze the problems of Business processes.	65%

Subject Code & Subject Name	COs	Attain ment
MB 301 : ENTREPRENEURSHIP & PROJECT MANAGEMENT	CO1: Understand the concept of management, Organization, planning, Staffing and learn the Project evaluation, termination, and controlling process	82%
	CO2: To evaluate the role of entrepreneurs in economic development, and barriers, Identification of business opportunities, and feasibility studies.	98%
MB 302 Corporate	CO1To understand and apply the methods of environmental scanning, strategic planning techniques & formulation strategies	81%

Strategy	for holistic strategic management in organization.	
	CO2 To analyze and evaluate the strategic actions, strategic implementation and evaluation strategies.	83%
HRM 301 TEAM DYNAMICS AT WORK	CO1: be able to understand the meaning of group dynamics and evaluate the concepts and theories behind the group formations including the Schachter Study and its implications.	93%
	CO2: The student will be able to evaluate effective team building strategies and apply knowledge in solving contemporary issues related with teams in modern organisations	93%
HRM 304 Organizational	CO1: To apply organization theory for better understanding of organizational structure and design	83%
Design	CO2: To analyze different organizational models for reshaping organizations.	82%
MM 302: Digital & Social Media Marketing	CO1: To explain the understanding of digital & social media marketing plan that will address common marketing challenges	81%
.warketing	CO2: Applying concepts, approaches & the practical aspects of various digital & social media marketing tools like SEO, Paid Search, Social, Mobile, Email & Display media & marketing analytics	81%
	CO3: Analyze key performance indicators tied to any digital & social Media program & Develop return on investment model for any digital & social marketing program	78%
	CO4: Apply creative ideas or evolve with existing ideas for development of effective digital & social marketing communication	82%
MM 303 :Integrated Marketing Communication	CO1: To explain the understanding of essential concepts & techniques for the development & designing of an effective IMC program	82%
	CO2: Applying concepts, approaches & the practical aspects of various communication tools	82%
	CO3: Analyze effectiveness of different IMC tools for business firms	77%
	CO4: Apply creative ideas for development of effective marketing communication	82%
FM 302 Project	CO1: To define the Project life cycle, the role of stakeholders and project life cycle, the role of stakeholders are represented by the role of stakeholders and project life cycle, the role of stakeholders are represented by the role of stakeholders and project life cycle, the role of stakeholders are represented by the role o	77%

Appraisal and Finance	management processes and to explain the concepts of prospecifications, financial projections, scope and team in Promanagement.	
	CO2: To describe and evaluate the risks involved in projects and associated costs as demonstrate the control and closure process relat project management.	75%
FM 304 Corporate Finance	CO1:To define and discuss the concepts & theories related to financial management.	77%
T manec	CO2:To describe and apply the various theories, tools and techniques of Corporate Finance to resolve real life financial problems	75%

Subject Code &	COs	Attain
Subject Name		ment
MB 201 Indian Economy and Policy	CO1: To Explain and design the concepts of circular flow, theo income determination, inflation, unemployment, LPG model, as we banking, trade policy and monetary reforms.	85%
	CO2: To Develop ideas of the Indian Economy and grasp the import of planning undertaken by the government of India.	83%
MB 202 Financial Reporting, Statement and Analysis	CO1: To explain the understanding of the concepts and apply the practical life like basic financial accounting concept, preparing boo accounts, introduction of Accounting Standard, preparation of fina statements and its analysis.	71%
	CO2: To Summarize the financial transactions in terms of Fina Statements and interpret Financial Statements by using diff financial tools and techniques.	74%
MB 203: Marketing Management	CO1: To identify & analyze the scope & significance of marketing in Domain Industry	80%
	CO2: To Analyze & examine marketing concepts & phenomenon to current business events in the industry	79%
	CO3: Map the various marketing environment variables & demonstrate them for designing marketing strategies for business firms	80%
	CO4: Demonstrate market analysis skill for developing innovative marketing strategies for firms	79%

CO1: To understand the suitable control technique in stores, Inventory, and vendor management is adopted for the production is identified.	80%
CO2: To analyze the scheduling techniques applied in the operations were learned by the students	75%
CO1: To identify the technologies and methods used for effective decision-making in an organization	92%
CO2: Make students understand the concepts and terminologies used in Database Management, Systems, SQL, Concurrency Management, and the extended part of data storage technology, Data Warehousing.	96%
CO1: The student will be able to understand and apply the various concepts behind Human Resource Management and development including planning, Performance Appraisal Systems and strategic HR management.	95%
CO2: The student will be able to understand and apply the theories and strategic concepts behind compensation Management, Industrial Relations and discipline including workers participation in management.	85%
	Inventory, and vendor management is adopted for the production is identified. CO2: To analyze the scheduling techniques applied in the operations were learned by the students CO1: To identify the technologies and methods used for effective decision-making in an organization CO2: Make students understand the concepts and terminologies used in Database Management, Systems, SQL, Concurrency Management, and the extended part of data storage technology, Data Warehousing. CO1: The student will be able to understand and apply the various concepts behind Human Resource Management and development including planning, Performance Appraisal Systems and strategic HR management. CO2: The student will be able to understand and apply the theories and strategic concepts behind compensation Management, Industrial

4th Semester

Subject Code & Subject Name	COs	Attain ment
HR 401 MANPOWER PLANNING, RECRUITMENT& SELECTION	CO1: Student will be able to understand and analyze the various manpower planning mechanisms in an organization including forecasting techniques, management information systems and human resources audits.	93%
	CO2: Student will be able to apply and exercise various HRM implementation strategies including recruitment and solve case studies pertaining to real life organisational issues and situations.	93%
HR402Employee Relations &Labour Laws	CO1:To understand EPM,WPM ,concept of collective bargaining,trade unionism in India	84%
Laws	CO2:To apply the various labour legislations in real life industrial scenario	79%
HR 404Performance Management System	CO1: To identify and apply performance planning ,monitoring, appraisal techniques & strategies for better performance management.	83%
	CO2: To understand balance scorecard, competency mapping for application in reward management, employee engagement and	82%

	potential appraisal	
HR 406 INTERNATIONAL HRM	CO1: Student will be able to understand International human resources management and development including the recruitment processes of such candidates.	93%
	CO2: The student will be able to remember and apply legislative measures meant for industrial relations, CSR and employee representation in the international sector and create compensation plans commensurate with the same.	93%
MM 401	CO1:Analysis consumer behaviour and its Impact on marketing strategies. Illustration of consumer decision process. Studednts will be understanding demographic and psychographic characteristics and market segmentation. Analysis of the relation between consumer perception with marketing stimuli. Students will learn to apply the knowledge of consumer motivation for marketing strategy and its relation with corporate social responsibility.	82%
	CO2: Students will develop the understanding of characteristics and functions of attitude, cross-cultural understanding of consumer behaviour and data analysis for consumer feedback researches. Students will comprehend and write effective technical reports. They will be able to analyse case studies, explain relevant materials, communicate effectively, identify the appropriate key words, use grammatically correct English for documentation.	85%
MM 403: Sales & Distribution	CO1: To explain the understanding of sales & distribution processes in Organization	77%
Management	To get familiarized with concepts, approaches & the practical aspects of the key decision-making variables in sales management & distribution channel management	75%
	CO3: To explain market analysis methods & selling concepts	78%
	CO4: To develop Performance evaluation methods, ethics, trends in sales & distribution management	76%
MM 404: Service Marketing	CO1: To explain the understanding of types, nature, classification & marketing mix of service marketing	77%
	CO2: Analyze service product concept, branding & service positioning that transforming service marketing to a great extent	75%
	CO3: To explain market analysis methods of service marketing	78%
	CO4: Demonstrate the role of identifying the people in service & the role of customer in service delivery	76%
MM 406:	CO1: To explain the understanding of global business	77%

International	activities, marketing processes in international business	
Marketing	To get familiarized with concepts, approaches & the practical aspects of the key decision-making variables & global forces that transforming international marketing	75%
	CO3: To develop general perspective about managing international marketing	76%
	CO4: To develop evaluation methods for International Marketing both in operational as well as strategic context	78%
OM 402 Behavioral Operations Management	CO1: To apply experimental learning theories & organizational behavior to ensure performance in work design	83%
Wanagement	CO2: To understand emotional intelligence in operations management & supply chain management	82%
FM 401 Investment Analysis & Portfolio Management	CO1To explain the understanding of the concepts and apply them like portfolio diversification, Construction, portfolio management, portfolio revision, portfolio evaluation, portfolio protection, and portfolio performance measures.	77%
	CO2To implement strategies to make an impact on the students in taking investment decisions, and properly manage the portfolio.	75%
FM402 Managing Banks & Financial Institutions	CO1To explain the understanding of the concepts and apply them like banking industry models, bank support mechanism, Basel committee I & II, interest rate, risk management, liquidity management and credit risk management. CO2 Evaluate and analyse the fundamentals & technical aspects of	80%
	managing banks and financial institutions.	79%
FM405International Finance	CO1To explain the understanding of the concepts and apply them like international financial management, international monetary System, balance of payments, exchange rate determination and foreign exchange market.	75%
	CO2Evaluate and analyse the fundamentals & technical aspects of International financial market.	72%
FM406 Financial Markets and Services	CO1To Discuss the Indian Financial System and multiplicity of Financial Instruments and understand the Indian financial system, money market, secondary market, SEBI, mutual Funds and credit rating agencies.	76%
	CO2 Examine Mutual Funds and Merchant Banking under the nodal agency SEBI.	80%

Civil Engineering Department CO ATTAINMENT 2021-2022

Paper Code (Name)	СО	COURSE OUTCOMES(COs)	ATTAINED (%)
		1 ST SEMESTER	
	CO1	Analyse microscopic chemistry in terms of atomic and molecular orbitals and intermolecular forces to solve different engineering problems.	72
	CO2	Rationalise bulk properties and processes using thermodynamic consideration for various engineering applications.	61
BS-PH101	CO3	Distinguish the ranges of the electromagnetic spectrum used for exciting different molecular energy levels in various spectroscopic techniques.	82
Chemistry-I	CO4	Rationalise periodic properties (ionization potential, electro negativity, oxidation states) for various engineering applications.	87
	CO5	Apply the knowledge of structure, stability and reactivity of organic molecular species in order to gain a clear insight into the mechanism of chemical and biochemical reacting systems used in various engineering problems.	75
	CO1	Apply the knowledge of simple harmonic motion (ideal and real cases) and basic concepts of Mechanics for the solution of complex problems.	81
	CO2	Utilize the knowledge of vector calculus and different coordinate system for the solution of complex problems.	72%
BS PH-101	CO3	Apply the knowledge of physical optics (interference, diffraction, polarization) and LASER to solve different complex problems	75%
(Physics-I)	CO4	Apply the knowledge of dielectric and magnetic properties of materials to interpret different complex systems.	83%
	CO5	Utilize the knowledge of Quantum Physics to analyze a complex engineering problem.	69%
	CO6	Apply the knowledge statistical mechanics to solve complex problems.	79%
BS-M101/ BS-M102 Mathematics –IA*/ Mathematics –IB *	CO1	Understand the properties of complex functions and their behavior. Know the techniques for evaluating complex integrals and series. Learn the theory of analytic functions, conformal mapping, the Cauchy-Riemann equations, concept of Taylor and Laurent series, complex integration, Liouville's theorem, residues and the Residue Theorem	75%
	CO2	Understand the concept of a differential equation and its solution. Know the techniques for solving first-order and second-order differential equations,	78%

		Cauchy-Euler differential equation, Bessel's equation, indicial equations, power-series solution.	
	CO3	Understand the concept of integration over two or three-dimensional regions/volumes. Know the techniques for evaluating double and triple integrals, including change of variables and polar, cylindrical, and spherical coordinates	78%
	CO4	Understand the statement of Stokes' theorem, Green's theorem and how to apply it to compute line integrals. Understand the concept of a curve and its parameterization. Know the techniques for evaluating line integrals, including parametric and vector forms. Understand the concept of a surface and its parameterization. Know the techniques for evaluating surface integrals, including parametric and vector forms. Understand volume integrals and Gauss divergence theorem.	74%
	CO1	Organize/Design the experiment related to Chemical Science as applicable in various Engineering problems.	71%
BS-PH191/	CO2	Generate experimental Data related to Chemical Science as applicable in complex problems.	68%
BS-CH191	CO3	Conduct actual experiment related to Chemical Science as applicable in different engineering application.	78%
Physics-I Laboratory (Gr-A)/ Chemistry-I Laboratory (Gr-B)	CO4	Analyze data and draw conclusion related to Chemical Science as applicable in various engineering problems.	83%
	CO5	Analyze with proper experimental data and graphs and communicate effectively related to Chemical Science as applicable in different engineering fields.	85%
	CO1	Organize/design the experiment related to various systems and interpret the physical properties of material.	72%
BS PH-191	CO2	Generate experimental Data related to electrical and magnetic properties.	80%
(Physics-Lab 1)	CO3	Conduct actual experiment related to optical phenomena.	78%
	CO4	Analyze data and draw conclusion related to quantum physics.	85%
	CO5	Analyze with proper experimental data and graphs and communicate effectively.	75%
ES-ME191/ ES- ME192	CO1	Introduction to engineering design and its place in society	87%
Engineering	CO2	Exposure to the visual aspects of engineering design	85%
Graphics & Design (Gr-B)/ Workshop	CO3	Exposure to engineering graphics standards	89%
/Manufacturing Practices(Gr-A)	CO4	Exposure to solid modelling	84%
		2 ND SEMESTER	
BS-CH201	CO1	Analyse microscopic chemistry in terms of atomic and molecular orbitals	69%

Chemistry-I		and intermolecular forces to solve different engineering problems.	
	CO2	Rationalise bulk properties and processes using thermodynamic consideration for various engineering applications.	72%
	СОЗ	Distinguish the ranges of the electromagnetic spectrum used for exciting different molecular energy levels in various spectroscopic techniques.	78%
	CO4	Rationalise periodic properties (ionization potential, electro negativity, oxidation states) for various engineering applications.	81%
	CO5	Apply the knowledge of structure, stability and reactivity of organic molecular species in order to gain a clear insight into the mechanism of chemical and biochemical reacting systems used in various engineering problems.	82%
	CO1	Apply the knowledge of simple harmonic motion (ideal and real cases) and basic concepts of Mechanics for the solution of complex problems.	82%
	CO2	Utilize the knowledge of vector calculus and different coordinate system for the solution of complex problems.	79%
BS PH-201	CO3	Apply the knowledge of physical optics (interference, diffraction, polarization) and LASER to solve different complex problems	74%
(Physics-I)	CO4	Apply the knowledge of dielectric and magnetic properties of materials to interpret different complex systems.	86%
	CO5	Utilize the knowledge of Quantum Physics to analyze a complex engineering problem.	76%
	CO6	Apply the knowledge statistical mechanics to solve complex problems.	69%
BS-M201/BS-M202 Mathematics –IIA# / Mathematics –IIB #	CO1	Understand the properties of complex functions and their behavior. Know the techniques for evaluating complex integrals and series. Learn the theory of analytic functions, conformal mapping, the Cauchy-Riemann equations, concept of Taylor and Laurent series, complex integration, Liouville's theorem, residues and the Residue Theorem.	85%
	CO2	Understand the concept of a differential equation and its solution. Know the techniques for solving first-order and second-order differential equations, Cauchy-Euler differential equation, Bessel's equation, indicial equations, power-series solution.	88%
	СОЗ	Understand the concept of integration over two or three-dimensional regions/volumes. Know the techniques for evaluating double and triple integrals, including change of variables and polar, cylindrical, and spherical coordinates	85%
	CO4	Understand the statement of Stokes' theorem, Green's theorem and how to apply it to compute line integrals. Understand the concept of a curve and its parameterization. Know the techniques for evaluating line integrals, including parametric and vector forms. Understand the concept of a surface and its parameterization. Know the techniques for evaluating surface	80%

	integrals, including parametric and vector forms. Understand volume integrals and Gauss divergence theorem.	
CO1	to be able to use the correct vocabulary in order to express oneself in English properly	62%
CO2	to be able to identify common errors in terms of grammar and choice of words in English	58%
CO3	to be able to describe , discuss , and interpret reading input in English	75%
CO4	to be able to demonstrate that one can express oneself in English through writing	64%
CO1	Organize/Design the experiment related to Chemical Science as applicable in various Engineering problems.	72%
CO2	Generate experimental Data related to Chemical Science as applicable in complex problems.	78%
CO3	Conduct actual experiment related to Chemical Science as applicable in different engineering application.	83%
CO4	Analyze data and draw conclusion related to Chemical Science as applicable in various engineering problems.	76%
CO5	Analyze with proper experimental data and graphs and communicate effectively related to Chemical Science as applicable in different engineering fields.	84%
CO1	Organize/design the experiment related to various systems and interpret the physical properties of material.	80%
CO2	Generate experimental Data related to electrical and magnetic properties.	78%
CO3	Conduct actual experiment related to optical phenomena.	85%
CO4	Analyze data and draw conclusion related to quantum physics.	68%
CO5	Analyze with proper experimental data and graphs and communicate effectively.	79%
CO1	Introduction to engineering design and its place in society ■	95%
CO2	Exposure to the visual aspects of engineering design	95%
CO3	Exposure to engineering graphics standards	95%
CO4	Exposure to solid modelling	95%
CO1	to be able to describe , discuss , and interpret the listening input in English	55%
CO2	to be able to demonstrate that one can express oneself in English through speaking	54%
CO3	to be able to describe , discuss , and interpret reading input in English	77%
CO4	to be able to demonstrate that one can express oneself in English through writing	67%
	CO2 CO3 CO4 CO5 CO1 CO2 CO3 CO4 CO5 CO1 CO2 CO3 CO4 CO5 CO1 CO2 CO3	to be able to use the correct vocabulary in order to express oneself in English properly to be able to identify common errors in terms of grammar and choice of words in English to be able to describe, discuss, and interpret reading input in English to be able to demonstrate that one can express oneself in English through writing Organize/Design the experiment related to Chemical Science as applicable in various Engineering problems. Co2 Generate experimental Data related to Chemical Science as applicable in complex problems. Co3 Conduct actual experiment related to Chemical Science as applicable in different engineering application. Analyze data and draw conclusion related to Chemical Science as applicable in various engineering problems. Co4 Analyze with proper experimental data and graphs and communicate effectively related to Chemical Science as applicable in different engineering fields. Co5 Generate experimental Data related to various systems and interpret the physical properties of material. Co6 Generate experimental Data related to electrical and magnetic properties. Co7 Conduct actual experiment related to optical phenomena. Co8 Analyze with proper experimental data and graphs and communicate effectively. Co9 Exposure to the visual aspects of engineering design Co9 Exposure to the visual aspects of engineering design Co9 Exposure to engineering graphics standards Co9 Exposure to solid modelling co9 to be able to describe, discuss, and interpret the listening input in English through speaking Co9 to be able to demonstrate that one can express oneself in English co9 to be able to demonstrate that one can express oneself in English

3 RD SEMESTER			
CE(ES)302	CO1	Understanding the various sources of energy and its interaction with the environment	67%
Energy Science	CO2	Designing energy efficient structures	67%
CE(HS)302 – INTRODUCTION TO CIVIL ENGINEERING	CO1	= To acquire knowledge about basic civil engineering techniques and apply the acquired knowledge in basic civil engineering problems	77%
CE(ES)392 Computer aided Civil Engineering Drawing	CO1	To understand the concept of engineering drawings and apply the same using computer aided design technology	79%
CE(ES)401	CO1	4 TH SEMESTER To understand about the properties and characteristics of fluid	90.8%
Introduction to Fluid Mechanics	CO2	To understand, analyze and evaluate the different characteristics, pattern and types of fluid flow and hydraulic machines.	90.2%
	CO1	Deterministic approaches for understanding interaction between material characteristic with load and time	89.9%
CE(ES)40 Introduction to Solid Mechanics	CO2	Knowledge about materials and structures and understand their deformation under load and Mathematical representation of the structure property	89.6%
CE(PC)401- Soil Mechanics – I	CO1	To understand, evaluate and gather knowledge about physical properties of soil and analyze the soil-water interaction system.	93.3%

	CO2	To understand and analyze the stress distribution and shear strength characteristics of soils.	92.8%
CE(PC)402- Environmental	CO1	Analyzing the sources, requirements, quality and treatment of water and design of the patterns of conveyance and distribution	92.2%
engineering -I	CO2	Analyzing the characteristics of municipal solid waste and it's handling by engineering systems.	92.4%
CE(PC)403- Surveying and	CO1	To understand the basic principles of surveying and geomatics	92.4%
Geomatics	CO2	To evaluate the different techniques of surveying and geomatics in solving basic problems and also analyze different and advanced technique of surveying	92.2%
CE(PC)404-	CO1	Understanding the properties , raw materials required for designing fresh and hardened concrete	92%
CONCRETE TECHNOLO GY	CO2	Analysing the mix design of concrete	91%
CE(HS)401-	CO1	Understanding the historical perspectives in the overall development of civil engineering	92.5%
CE-SOCIETAL and global impact	CO2	Understanding the challenges of future civil engineering projects	92.8%
CE(ES)491- FLUID LABORATORY	CO1	Apply the knowledge of fluid characteristics for determination of various parameters related to fluid flow through experimentation.	94.4%
CE(ES)492- SOLID MECHANICS LABORATORY	CO1	Apply the knowledge of material characteristics to determine various strength parameters through experimentation.	94%
CE(ES)493- ENGGINEERING GEOLOGY LABORATORY	CO1	Apply the knowledge of Engineering Geology in determining the physical properties of rocks and minerals and to understand and delineate different geological structures by the interpretation of geological maps	94.4%

CE(PC)493- SURVEYING AND GEOMATICS LABORATORY	CO1	Application of the knowledge of surveying and geomatics for determination of different methods of surveying for measurement							
CE(PC)494-CONC LAB	CO1	Applying the knowledge of Concrete technology in determining the various parameters of Concrete and its design.							
		5 TH SEMESTER							
		To understand about the concept of limit state and working stress							
CE(PC)501-	CO1	method of design.	70.4%						
DESIGN OF RC STRUCTURES	CO2	To understand, analyze and evaluate about the design of different types of RC structures by Limit State Method and Working Stress Method.	70.2%						
CE(PC)502	CO1	Understanding the basic concepts of Hydrology.	86.1%						
ENGINEERING HYDROLOGY	CO2	Analysis of different hydrological parameters and mitigation methods of floods and flood management.							
CE(PC)503-structURAL	CO1	Knowledge of static, determinate and indeterminate structures	83.1%						
ANALYSIS -I	CO2	Analysis of all type of structure of its stability and instability							
CE(PC)504-SOIL	CO1	To understand, evaluate and analyze about consolidation, compaction and earth pressures of soil.							
MECHANICS - 2	CO2	To understand, analyze, evaluate the bearing capacity and settlement analysis of shallow foundation and slope stability analysis of any manmade or natural slope.	84.7%						
	CO1 Define the basic concepts and terminologies of waste water engineering, hazardous waste management, Plumbing systems for water supply								

CE(PC)505-		and waste water disposal	
ENVIRONMENT AL ENGINEERING 2	CO2	Apply the methods of quantifying sanitary sewage and storm sewage, solve mathematical problems and design different processes operations involved in waste water treatment.	90%
CE(PC)506- TRANSPORTATION ENGINEERING	CO1	TO UNDERSTAND THE KNOWLEDGE OF PLANNING, DESIGN AND THE FUNDAMENTAL PROPERTIES OF HIGHWAY MATERIALS IN HIGHWAY ENGINEERING	94.2%
	CO2	APPLY AND INTERPRET THE KNOWLEDGE OF GEOMETRIC DESIGN AND TRAFFIC STUDIES	93.4%
CE(PC)591-RC DESIGN SESSIONAL	CO1	Apply the knowledge of RCC structure.	69.7%
CE(PC)594-SOIL MECHANICS LABORATORY	CO1	Understand every aspect of soil investigation and prepare a lab report	94.8%
CE(PC)595- ENVIRONMENT AL ENGINEERING LABORATORY	CO1	Organize/Design the experiment related to Digital Signal Processing Lab.	85.1%
CE(PC)596- TRANSPORTATI ON LABORATORY	CO1	TO understand the application of different laboratory tests.	86.4%
CE(PC)597-COMPUTER APPLICATION IN CIVIL ENGINEERING	CO1	Understanding Computer applications to apply in civil engineering field	94.06%

6TH SEMESTER

		6 ^{1H} SEMESTER	
CE(PC)601- CONSTRUCTIO N	CO1	To Understand how structures are built.	96%
ENGINEERING AND MANAGEMENT	CO2	To evaluate the necessary steps for the completion of a project from the beginning to the end.	95%
CE(PC)602- ENGINEERING	CO1	To understand the principles of economics and it's application on value analysis of civil engineering projects	78.7
ECONOMICS,ES TIMATION AND COSTING	CO2	To understand the technical specifications of rate analysis, Tender and valuation performed for a project and analyse the cost of a structure through these parameters.	78.4
CE(PC)603-WATER RESOURCE ENGINEERING	CO1	To apply the fundamentals of flow in open channel to design them accordingly	90.17
	CO2	To understand the different concepts of Irrigation in connection with the water requirement for different crops and obtain knowledge about various ground water resources	89.37
CE(PC)604- DESIGN OF	CO1	Understanding the properties and its utility in civil engineering design	83%
STEEL STRUCTURES	CO2	Analysis of the use of steel in designing various structures	83%
CE(PE)601B- FOUNDATION			84.2
ENGINEERING	CO2	Analyse the design of sheet pile structure on the basis of earth pressure theories and understand and apply various types of ground improvement methods for solving complex geotechnical problems	84%
CE(PE)602A- BUILDING,CONSTRUCT ION AND PRACTICE	CO1	Understand the knowledge of various structures that used in civil engineering construction	87.8

CE(PC)693-Water Resource Laboratory	CO1	To apply different techniques for proper use of water as an useful resource.	87%
CE(PC)694-STEEL STRUCTURE DESIGN SESSIONAL	CO1	Apply the knowledge of steel structure in design	74.7
CE(PC)695-QUANTITY SURVEYESTIMA TION AND VALUATION SESSIONAL	CO1	To evaluate about the specification and valuation of works and materials used in any civil engineering construction project	79.3

7TH SEMESTER

CE(OE)701A-	CO1	understand the overview of how the metro system works	84.9%			
METRO SYSTEM AND ENGINEERING	CO2	to apply the knowledge of different metro sysytem engineeirng works	84.5%			
	CO1	To understand and evaluate about the characteristics of various types and components of dams and their selection procedure.				
CE(PE)701C- HYDRAULIC STRUCTURES	CO2	To analyze about the stability analysis of different hydraulic structures (dam) and estimate about different types of forces, seepage loss and discharge calculation acting on dams and their remedial measures .	82.1%			
CE(PE)702A- PRESTRESS	CO1	Understanding the purpose, parameters and application of Prestressed Concrete structure	96.3			
CONCRETE	CO2	Design of Prestressed Concrete Structures	96.4			
CE(PE)703A-	CO1	Understanding the concepts of air and noise pollution, methods of their	91%			

AIR AND NOISE POLLUTION		measurement.	
	CO2	Analyze the concepts of air and noise pollution solving mathematical problems and design techniques for air and noise pollution control	90.6%
CE(PE)704C-COASTAL	CO1	Understanding the various mechanisms involved in generation of tides, currents and waves and its implications on sediment transport.	80.6%
HYDRAULICS AND SEDIMENT TRANSPORT	CO2	Applying the knowledge of wave current mechanics and sediment transport in analyzing different shore line and coastal structures	80.26%
CE(PE)705A- RAILWAY AND	CO1	to acquire the knowledge of basic railway engineering	72.2%
AIRPORT ENGINEERING	CO2	to acquire the knowledge of basic airport engineering.	71.13%

8TH SEMESTER

CE(PE)801D PAVEMENT MATERIALS	CO1	To understand about the different materials for suitability of road and their availability characteristics.	77.6
	CO2	To understand and evaluate the properties of soil and physical modification of pavement works	77.3
CE(0E)801C DEEP FOUNDATION	CO1	To understand, evaluate and analyze about the selection of suitable type of deep foundation for various site conditions.	77.56
	CO2	To understand, analyze and evaluate the concept about bearing capacity of different types of deep foundations.	77

Course Details:

Course Name:	Data Structure & Algorithm
Course Code:	PCC-CS301
Name of the Program:	B.Tech
Department	Computer Science Engineering
Semester	3 rd Semester

COURSE OUTCOME:

On successful completion of this course, students should be able to:

CO1	To learn and apply the basics of abstract data types.
CO2	To learn and apply the principles of linear and nonlinear data structures.
CO3	To build an application using sorting and searching.
CO4	Design applications with the knowledge of computation and principles of data
	structures.

Data Structure &		CO	Attainment
Algorithm	CO1	To learn and apply the	10%
		basics of abstract data types.	
	CO2	To learn and apply the	15%
		principles of linear and	
		nonlinear data structures.	
	CO3	To build an application	15%
		using sorting and searching.	
	CO4	Design applications with the	25%
		knowledge of computation	
		and principles of data	
		structures.	

CO-PO Mapping:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1		V	$\sqrt{}$									
CO2												
CO3												
CO4			V									

Course Details:

Course Name:	Data Structure & Algorithm Lab
Course Code:	PCC-CS391
Name of the Program:	B.Tech
Department	Computer Science Engineering
Semester	3 rd Semester

COURSE OUTCOME:

On successful completion of this course, students should be able to:

CO1	Design and develop programs using data structure & algorithm concepts.
CO2	Develop simple applications using linear and non-linear data structures & algorithms concepts and understand the access mechanisms and other use and functionalities.
CO3	Implement searching and sorting concepts
CO4	Implement the concepts of graph and hashing

Data Structure &		CO	Attainment					
Algorithm Lab	CO1	Design and develop programs using data structure & algorithm concepts.	15%					
	CO2	Develop simple applications using linear and non-linear data structures & algorithms concepts and understand the access mechanisms and other use and functionalities.	10%					
	CO3	Implement searching and sorting concepts.						
	CO4	Implement the concepts of graph and hashing	25%					

CO-PO Mapping:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1		V	V									
CO2		V										
CO3		V										
CO4		$\sqrt{}$										

Course Details:

Course Name:	Computer Organization
Course Code:	PCC-CS302
Name of the Program:	B.Tech
Department	Computer Science Engineering
Semester	3 rd Semester

COURSE OUTCOME:

On successful completion of this course, students should be able to:

CO1	Understand basic structure of digital computer, stored program concept and different
	arithmetic and control unit operations.
CO2	Understand basic structure of different combinational circuits- multiplexer, decoder,
	encoder etc.
CO3	Perform different operations with sequential circuits.
CO4	Understand memory and I/O operations.

Computer		CO	Attainment
Organization	CO1	Understand basic structure	15%
		of digital computer, stored	
		program concept and	
		different arithmetic and	
		control unit operations.	
	CO2	Understand basic structure	15%
		of different combinational	
		circuits- multiplexer,	
		decoder, encoder etc.	
	CO3	Perform different operations	25%
		with sequential circuits.	
	CO4	Understand memory and	10%
		I/O operations.	

CO-PO Mapping:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1												
CO2					V		V					
CO3									V			
CO4					V		V					

Course Details:

Course Name:	Computer Organization Lab
Course Code:	PCC-CS392
Name of the Program:	B.Tech
Department	Computer Science Engineering
Semester	3 rd Semester

COURSE OUTCOME:

On successful completion of this course, students should be able to:

CO1	Understand basic structure of digital computer, stored program concept and different arithmetic and control unit operations.
CO2	Understand basic structure of different combinational circuits- multiplexer, decoder,
	encoder etc.
CO3	Perform different operations with sequential circuits.
CO4	Understand memory and I/O operations.

Computer		CO	Attainment
Organization Lab	CO1	Understand basic structure	10%
		of digital computer, stored	
		program concept and	
		different arithmetic and	
		control unit operations.	
	CO2	Understand basic structure	15%
		of different combinational	
		circuits- multiplexer,	
		decoder, encoder etc.	
	CO3	Perform different operations	15%
		with sequential circuits.	
	CO4	Understand memory and	10%
		I/O operations.	

CO-PO Mapping:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1							V					
CO2												
CO3									V			
CO4							$\sqrt{}$					

Course Details:

~ >7	
Course Name:	Compiler Design
Course maine.	Computer Design

Course Code:	PCC-CS501
Name of the Program:	B.Tech
Department	Computer Science Engineering
Semester	5 th Semester

COURSE OUTCOME:

On successful completion of this course, students should be able to:

CO1	To apply the basic concept of compilers and discuss on the components as well as
	the strengths and weaknesses of various phases of designing a compiler.
CO2	To understand the role of finite automata in compiler design.
CO3	To design and analyze algorithms for syntactic or parsing techniques and semantic
	analysis of the process of designing compilers.
CO4	Apply the knowledge of Type Checking and Run-Time Environments in designing a
	compiler.
CO5	Apply the knowledge of Intermediate Code Generation, Code Optimization and
	Code Generations in designing a compiler.

COAttain ment of Subjects

		СО	Attainment
	CO1	To apply the basic concept of compilers and discuss on	5%
		the components as well as	
		the strengths and	
		weaknesses of various	
		phases of designing a compiler.	
	CO2	To understand the role of	10%
		finite automata in compiler	
	G02	design.	100/
	CO3	To design and analyze algorithms for syntactic or	10%
Compiler Design		parsing techniques and	
PCC-CS501		semantic analysis of the	
		process of designing	
		compilers.	
	CO4	Apply the knowledge of	15%
		Type Checking and Run-	
		Time Environments in	
	G0.5	designing a compiler.	1.70/
	CO5	Apply the knowledge of	15%
		Intermediate Code Generation, Code	
		Optimization and Code	
		Generations in designing a	
		compiler.	

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1												
CO2												
CO3												
CO4		V			V		V					
CO5												

Course Details:

Course Name:	Operating Systems
Course Code:	PCC-CS502
Name of the Program:	B.Tech
Department	Computer Science Engineering
Semester	5 th Semester

COURSE OUTCOME:

On successful completion of this course, students should be able to:

CO1	Understand processes and threads.
CO2	Design algorithms for process scheduling for a given specification of CPU
	utilization, Throughput, Turnaround Time, Waiting Time and Response Time.
CO3	For a given specification of memory organization develop the techniques for
	optimally allocating memory to processes by increasing memory utilization and for
	improving the access time. Design and implement file management system.

		CO	Attainment
	CO1	Understand processes and	20%
		threads.	
Operating Systems	CO2	Design algorithms for	15%
		process scheduling for a	
		given specification of CPU	
		utilization, Throughput,	
		Turnaround Time, Waiting	
		Time and Response Time.	
	CO3	For a given specification of	15%
		memory organization	
		develop the techniques for	
		optimally allocating	
		memory to processes by	
		increasing memory	
		utilization and for	
		improving the access time.	
		Design and implement file	
		management system.	

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1												
CO2			V	V						V		
CO3				V			V					

Course Details:

Course Name:	Operating System Lab
Course Code:	PCC-CS592
Name of the Program:	B.Tech
Department	Computer Science Engineering
Semester	5 th Semester

COURSE OUTCOME:

On successful completion of this course, students should be able to:

CO1	To Analyze different aspects of Linux.
CO2	To Create or design different scripts using shell programming.
CO3	To Create or design different scripts using shell programming.
CO4	Create shared memory with the implementation of reading from, write into shared
	memory.

CO Attainment of Subjects

		CO	Attainment
	CO1	To Analyze different	10%
		aspects of Linux.	
Operating System	CO2	To Create or design	15%
Lab		different scripts using shell	
PCC-CS592		programming.	
	CO3	To Create or design	15%
		different scripts using shell	
		programming.	
	CO4	Create shared memory with	15%
		the implementation of	
		reading from, write into	
		shared memory.	

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1												
CO2												
CO3			V	V								
CO4				V								

Course Details:

Course Name:	Object Oriented Programming
Course Code:	PCC-CS503
Name of the Program:	B.Tech
Department	Computer Science Engineering
Semester	5 th Semester

COURSE OUTCOME:

On successful completion of this course, students should be able to:

CO1	Specify simple abstract data types and design implementations, using abstraction functions to document them.
CO2	Recognize features of object-oriented design such as encapsulation, polymorphism, inheritance, and composition of systems based on object identity
CO3	Name and apply some common object-oriented design patterns and give examples of their use
CO4	Design applications with an event-driven graphical user interface.

COAttainmentofSubjects

		CO	Attainment
	CO1	Specify simple abstract data	10%
		types and design	
Object Oriented		implementations, using	
Programming		abstraction functions to	
		document them.	
	CO2	Recognize features of	15%
		object-oriented design such	
		as encapsulation,	
		polymorphism, inheritance,	
		and composition of systems	
		based on object identity	
	CO3	Name and apply some	15%
		common object-oriented	
		design patterns and give	
		examples of their use	
	CO4	Design applications with an	5%
		event-driven graphical user	
		interface.	

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1												
CO2												
CO3					1							
CO4					1							

Course Details:

Course Name:	Object Oriented Programming Lab
Course Code:	PCC-CS593
Name of the Program:	B.Tech
Department	Computer Science Engineering
Semester	5 th Semester

COURSE OUTCOME:

On successful completion of this course, students should be able to:

CO1	Design and develop java programs using object oriented programming concepts
CO2	Develop simple applications using object oriented concepts such as package, exceptions
CO3	Implement multi-threading, and generics concepts
CO4	Create GUIs and event driven programming applications for real world problems

CO Attainment of Subjects

Object Oriented		CO	Attainment
Programming Lab	CO1	Design and develop java programs using object oriented programming	15%
	CO2	Develop simple applications using object oriented concepts such as package, exceptions	15%
	CO3	Implement multi-threading, and generics concepts	15%
	CO4	Create GUIs and event driven programming applications for real world problems	15%

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1		V										
CO2												
CO3												
CO4		V			V							

Course Details:

Course Name:	Software Engineering
Course Code:	ESC 501
Name of the Program:	B.Tech
Department	Computer Science Engineering
Semester	5 th Semester

COURSE OUTCOME:

On successful completion of this course, students should be able to:

CO1	Apply basic SW engineering methods and practices different models, and their appropriate application, SRS Document.
CO2	Determine the role of project management including planning, scheduling, risk management, etc.
CO3	An understanding of software testing approaches such as unit testing and integration testing.
CO4	An understanding of software evolution and related issues such as version management.

CO-PO Mapping:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1					V							
CO2			V	V						$\sqrt{}$		
CO3					V		V					
CO4					V		V					

		CO	Attainment
Software Engineering	CO1	Apply basic SW engineering methods and practices different models, and their appropriate application, SRS Document.	15%
	CO2	Design the role of project management including planning, scheduling, risk management, etc.	15%
	CO3	An understanding of software testing approaches such as unit testing and integration testing.	15%
	CO4	An understanding of software evolution and related issues such as version management.	10%
PaperCode (Name)	CO Num ber	Course Outcomes(CO)	ATTAINED

	CO1	Analyze the economic decisions making, engineering costs & estimation and classification of costs by applying the knowledge of estimating models. Student will develop an understanding of cash-flow, Rate of return analysis in different socioenvironmental situations.	15 %
HSMC301 Economics for Engineers	CO2	Analyze the inflation and price change would be done to the students for the proper understanding of the price-indexes in economic analysis. Effect of inflation & deflation is analyzed to them to remember and if required to apply in real-life scenarios.	25 %
	CO3	Recognize the types of property, depreciation and expenses and its impact on business, for better understanding of the business environment and apply the knowledge of it.	16 %

Mapping of Course Outcomes and Program Outcomes for the subject Economics for Engineers(HSMC301)

CourseO		Program										
utcomes		Outcome										
							S					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1		✓		✓								
CO2		√		✓								
CO3							>					✓

PaperCode(Name)	CO Number	Course_Outcoms (CO)	ATTAINED
PEC-IT501B ArtificialInte lligence	CO1	Apply the goodprogramming skillsto formulate thesolutions forcomputationalpr oblems.	25%
	CO2	Design and developsolutions forinformed anduninformed searchproblemsinA I.	20%
	CO3	Understandandenric h knowledge toselect and apply Altools to synthesizeinformati on anddevelopmodelsw ithin constraints ofapplicationarea.	25%

$Mapping\ of\ Course Outcomes\ and\ Program Outcomes for\ the Artificial Intelligence$

CourseO		Program										
utcomes		Outcome										
							S					
	PO1	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12										
CO1	✓				✓	✓					✓	
CO2			√	√						✓		
CO3					√		√					

Paper Code(Name	CO Number	CourseOutcomes(CO)	ATTAINED
	CO1	Analyze the concept of innovation andentrepreneurship, contributions of entrep reneurs to the society, risk-opportunities perspective by applying the knowledge of factors affecting them.	25%
HSMC501, Industrial Management	CO2	Analyze the project management, issuesandproblemsinprojectmanagement, projectlife cycleinitiation/conceptualization phase, determination ofproject feasibility studies would be donetothestudents fortheirproper understandingofsocialcostbenefitan alysis.	20%
	CO3	Identification and illustration of thecritical path and its significance, types offloatsand slacksanditsimpactonbusiness, for better understanding of therecent trendsand applytheknowledge of it.	15%

Mapping of Course Outcomes and Program Outcomes for the subject Industrial Management (HSMC 501)

Course		Program										
Outcomes		Outcomes										
	PO	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	1											
CO1		✓		✓								
CO2		√		√								
CO3		√					√				·	

PaperCode (Name)	CO Number	Course Outcomes(CO)	ATTAINED			
PEC-IT501B Introductionto Philosophicalthoughts	CO1	Identifytheevaluation ofthehistoryof philosophy.	10%			
	CO2	Identifyreligious concepts,traditions, andhistoricalpractices overtimeand across cultures.	25%			
	CO3	Analyzecourse-related materialtoevaluatethe historicaldevelopment ofcontemporaryissues.	15%			

Mapping of Course Outcomes and Program Outcomes for the subject Philosophical thoughts (OEC-CS701B/C)

CourseO	ProgramOutcome											
utcomes		S										
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1		✓										
CO2		√										
CO3		√		√								

PaperCode (Name)	CO Number	Course	ATTAINED
		Outcomes(CO)	

PEC-CS701B		Understand	15%
CloudComputing	CO1	thefundamentalprincipl	
		esofdistributedcomputi	
		ng.	
		T T 1 . 1	2004
	CO2	Understand	20%
	CO2	theimportanc eof	
		virtualizationin	
		distributedcomputing	
		andhowthishasenabled	
		thedevelopmentofClou	
		d	
		Computing	1.50/
	GOA	11-4611-6	15%
	CO3	Identifyanddefine	
		technicalchallengesfor cloudapplicationsand	
		assesstheirimportance.	
		assessmen importance.	

Mapping of Course Outcomes and Program Outcomes for the subject Cloud Computing (PEC-CS701B)

CourseO	ProgramOutcome											
utcomes		S										
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1							✓					
CO2							√					
CO3		√										

Course Details:

Course Name:	CyberSecurity
Course Code:	PEC-CS 702E
Name of the Program:	B.Tech
Department	Computer Science Engineering

PaperCode (Name)	CO Number	Course Outcomes(CO)	ATTAINED
PEC-CS702E CyberSecurity	CO1	Recognize andanalyzesoftware vulnerabilitiesandsecu ritysolutions toreduce the risk ofexploitation.	25%
	CO2	Design operational andstrategic cyber securitystrategies and policies.	25%
	CO3	Implement cyber securitysolutionsanduse of cybersecurity, inform ationassurance, and cyber/computer for ensics software/tools.	10%

Mapping of Course Outcomes and Program Outcomes for the subject Cyber Security (PEC-CS702E)

CourseO	ProgramOutcome											
utcomes							S					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1		√		√								✓
CO2			√	√								
CO3				√								

Paper Code(Name	CO Number	CourseOutcomes(CO)	ATTAINED
	CO1	Analyzetheconceptofinnovationandent repreneurship,contributionsofentrepre neursto thesociety,risk-opportunities perspective by applyingtheknowledgeoffactorsaffecting them.	10%

HSMC701,Project ManagementandEn trepreneurship	CO2	Analyzetheproject management,issuesandproblems in projectmanagement,projectlife cycle- initiation/conceptualization phase, determination of project feasibility studies will bedone tothe studentsfortheirproper understandingofsocialcostbenefitan alysis.	15%
	CO3	Identify and recognize the critical pathand its significance, types of floats andslacks and its impact on business, forbetterunderstanding oftherecent trends and applythe knowledgeofit.	25%

 $Mapping of Course Outcomes and Program Outcomes for the subject Project Management\ and\ Entrepreneurs hip (HSMC701)$

CourseO		ProgramOutcome										
utcomes		S										
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1		√		√								
CO2		✓		√								
CO3		√										✓

Course Name:	Design and Analysis of Algorithms
Course Code:	PCC-CS404
Name of the Program:	B.Tech
Department	Computer Science Engineering
Semester	4 th Semester

COURSE OUTCOME:

On successful completion of this course, students should be able to:

CO1	To analyze and identify the Complexity of a problem and compute the recurrence relation.
CO2	To analyze the several algorithms design techniques on some certain problems using divide & conquer method, dynamic programming approach and backtracking, greedy method.
CO3	To understand lower bound theory, graph traversal algorithm, network flow, disjoint set manipulation different method.
CO4	To design the algorithm of string matching problem, matrix manipulation algorithm.
CO5	To understand amortize analysis, approximation algorithm, notion of NP-completeness.

COAttain ment of Subjects

		CO	Attainment
	CO1	To analyze and identify the	100/
		Complexity of a problem and compute the recurrence relation.	10%
Design and Analysis of	CO2	To analyze the several algorithms	
Algorithms		design techniques on some	15%
(PCC-CS404)		certain problems using divide &	
		conquer method, dynamic programming approach and	
		backtracking, greedy method.	
	CO3	To understand lower bound	
		theory, graph traversal algorithm,	5%
		network flow, disjoint set manipulation different method.	
	CO4	To design the algorithm of string matching problem, matrix manipulation algorithm.	15%
	CO5	To understand amortize analysis, approximation algorithm, notion of NP-completeness.	15%

CO-PO Mapping:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1		V										
CO2		V	$\sqrt{}$	1						V		
CO3					$\sqrt{}$		$\sqrt{}$					
CO4			V	V						$\sqrt{}$		$\sqrt{}$
CO5					V		V					

Course Details

Course Name:	Design and Analysis of Algorithm Lab
Course Code:	PCC-CS494
Name of the Program:	B.Tech
Department	Computer Science Engineering
Semester	4 th Semester

COURSE OUTCOME:

On successful completion of this course, students should be able to:

CO1	Design algorithm and implement C program using divide and conquer approach in Computer Science and Engineering and related fields.
CO2	Design algorithm and implement C program using dynamic programming in Computer Science and Engineering and related fields.
CO3	Design algorithm and implement C program using branch and bound method in Computer Science and Engineering and related fields.
CO4	Design algorithm and implement C program using backtracking in Computer Science and Engineering and related fields.
CO5	Design algorithm and implement C program using greedy method in Computer Science and Engineering and related fields.
CO6	Design Graph Traversal Algorithm and implement C program in Computer Science and Engineering and related fields.

COAttainment

		CO	Attainment
	CO1	Design algorithm and implement C program using divide and conquer approach in Computer Science and Engineering and related fields.	15%
Design and Analysis of Algorithm Lab (PCC-CS494)	CO2	Design algorithm and implement C program using dynamic programming in Computer Science and Engineering and related fields.	5%
	СОЗ	Design algorithm and implement C program using branch and bound method in Computer Science and Engineering and related fields. App	5%
	CO4	Design algorithm and implement C program using backtracking in Computer Science and Engineering and related fields.	15%
	CO5	Design algorithm and implement C program using greedy method	10%

	in Computer Science and Engineering and related fields.	
CO6	Design Graph Traversal Algorithm and implement C program in Computer Science and Engineering and related fields.	15%

CO-PO Mapping:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1				$\sqrt{}$						V		
CO2				$\sqrt{}$						$\sqrt{}$		
CO3										$\sqrt{}$		
CO4				$\sqrt{}$						$\sqrt{}$		
CO5			$\sqrt{}$	V						1		

Course Name:	Computer Architecture
Course Code:	PCC-CS402
Name of the Program:	B.Tech
Department	Computer Science Engineering
Semester	4 th Semester

COURSE OUTCOME:

On successful completion of this course, students should be able to:

CO1	Design pipelining concepts with a prior knowledge of stored program methods
CO2	Design about memory hierarchy and mapping techniques
CO3	Understand parallel architecture and interconnection network

		CO	Attainment
	CO1	Design pipelining concepts with a prior knowledge of stored program methods	10%
Computer Architecture (PCC- CS402)	CO2	Design about memory hierarchy and mapping techniques	25%
C5402)	CO3	Understand parallel architecture and interconnection network	25%

CO-PO Mapping:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1			V	V								
CO2			V	V								
CO3					V		$\sqrt{}$					

Course Details

Course Name:	Computer Architecture Lab
Course Code:	PCC-CS492
Name of the Program:	B.Tech
Department	Computer Science Engineering
Semester	4 th Semester

COURSE OUTCOME:

On successful completion of this course, students should be able to:

CO1	Design pipelining concepts with a prior knowledge of stored program methods
CO2	Design about memory hierarchy and mapping techniques
CO3	Understand of parallel architecture and interconnection network

CO Attainment

		CO	Attainment
Computer Architecture Lab (PCC-CS492)	CO1	Design pipelining concepts with a prior knowledge of stored program methods	10%
	CO2	Design about memory hierarchy and mapping techniques	25%
	CO3	Understand of parallel architecture and interconnection network	25%

CO-PO Mapping:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1				$\sqrt{}$						$\sqrt{}$		
CO2										V		
CO3					V		V					

Course Details

Course Name:	Formal Language & Automata
Course Code:	PCC-CS403
Name of the Program:	B.Tech
Department	Computer Science Engineering
Semester	4 th Semester

COURSE OUTCOME:

On successful completion of this course, students should be able to:

CO1	Formulate a formal notation for strings, languages and machines.
CO2	Design finite automata to accept a set of strings of a language
CO3	For a given language understand whether the given language is regular or not.
CO4	Design context free grammars to generate strings of context free language.
CO5	Understand equivalence of languages accepted by Push Down Automata and languages generated by context free grammars
CO6	Analyze the hierarchy of formal languages, grammars and machines.
CO7	Recognize between computability and non-computability and Decidability and undecidability.

		CO	Attainment
Formal Language & Automata PCC-	CO1	Formulate a formal notation for strings, languages and machines.	10%
CS403)	CO2	Design finite automata to accept a set of strings of a language	15%
	CO3	For a given language understand whether the given language is regular or not.	5%
	CO4	Design context free grammars to generate strings of context free language.	5%
	CO5	Understand equivalence of languages accepted by Push Down Automata and languages generated by context free grammars	10%
	CO6	Analyze the hierarchy of formal languages, grammars and machines.	10%
	CO7	Recognize between computability and non-computability and Decidability and undecidability.	5%

CourseOut comes		ProgramOutcomes										
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1		√										
CO2			✓	√						✓		
CO3					✓		√					
CO4			✓	✓						√		
CO5					✓		✓					
CO6		✓										
CO7												✓

Course Details

Course Name:	DBMS
Course Code:	PCC-CS601
Name of the Program:	B.Tech
Department	Computer Science Engineering
Semester	6 th Semester

Course Outcome

On completion of the course students will be able to

- 1. Analyze a given query using relational algebra expressions and SQL for that query and optimize the developed expressions.
- 2. Design a given specification of the requirement design the databases using E R method and normalization.
- 3. Formulate a given transaction-processing system, determine the transaction atomicity, consistency, isolation, and durability.
- 4. Implement the isolation property, including locking, time stamping based on concurrency control and Serializability of scheduling.

		CO	Attainment
DBMS	CO1	Analyze a given query using relational algebra expressions and SQL for that query and optimize the developed expressions.	20%
	CO2	Design a given specification of the requirement design the databases using E R method and normalization.	10%
	CO3	Formulate a given transaction- processing system, determine the transaction atomicity, consistency, isolation, and durability.	15%
	CO4	Implement the isolation property,	

including locking, time stamping	14%
based on concurrency control and	
Serializability of scheduling.	

CO – PO Mapping

CourseOut comes		ProgramOutcomes										
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1		√										
CO2			✓	✓						✓		
CO3		✓										
CO4				√								

Course Details

Course Name:	DBMS LAB
Course Code:	PCC-CS691
Name of the Program:	B.Tech
Department	Computer Science Engineering
Semester	6 th Semester

COURSE OUTCOMES

- 1 Infer database language commands to create simple database.
- 2 Analyse the database using queries to retrieve records.
- 3 Applying PL/SQL for processing database.
- 4 Develop solutions using database concepts for real time requirements.

		СО	Attainment
	CO1	Understand HTML and Infer database language commands to create simple database.	10%
DBMS LAB	CO2	Analyze the database using queries to retrieve records.	20%
	CO3	Applying PL/SQL for processing database.	15%
	CO4	Develop solutions using database concepts for real time requirements.	20%

CO - PO Mapping

CourseOut comes		ProgramOutcomes										
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1					✓		√					
CO2		✓								✓		
CO3	✓				✓	✓					✓	
CO4							✓					

Course Details:

Course Name:	Computer Networks
Course Code:	PCC-CS602
Name of the Program:	B.Tech
Department	Computer Science Engineering
Semester	6 th Semester

COURSE OUTCOME:

On successful completion of this course, students should be able to:

CO1	To develop an understanding of modern network s from a design and performance perspective.
CO2	To introduce the student to the major concepts involved in wide-area networks (WANs), local area networks (LANs) and Wireless LANs (WLANs)
CO3	To provide an opportunity to do network programming
CO4	To provide a WLAN measurement ideas.

		СО	Attainment
	CO1	To develop an understanding of	
Computer Networks		modern network s from a design	10%
(PCC-CS602)		and performance perspective.	
	CO2	To introduce the student to the	
		major concepts involved in wide-	
		area networks (WANs), local area	20%
		networks (LANs) and Wireless	
		LANs (WLANs)	
	CO3	To provide an opportunity to do	
		network programming	15%
	CO4	To provide a WLAN	
		measurement ideas.	10%

CO-PO Mapping:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1					V							
CO2					V							
CO3					V							
CO4					V							

Course Details:

Course Name:	
	ComputerNetworksLab
Course Code:	PCC-CS692
Name of the Program:	B.Tech
Department	Computer Science Engineering
Semester	6 th Semester

COURSEOUTCOMES

After completion of course, students would be able to:

- 1. Identifyandusevariousnetworkingcomponents.
- 2. Analyzeperformance of various communication protocols.
- ${\it 3.} \quad Understand the transport layer concepts and protocoldesign including connection oriented and connection-less models.$
- 4. Implementdevicesharingonnetwork.

COAttain ment of Subjects

Paper Code(Na me)	CO Number	Course Outcomes(C O)	ATTAINED
	COI	Identify and understand of Various networking components.	10%
ComputerNet works Lab Code:PCC-	CO2	Analyze the performance of Various communication protocols.	15%
CS692	CO3	Understand the transport Layer concepts and Protocol design including Connection oriented and Connectionless models.	10%
	CO4	Implement device sharing On network.	20%

Mapping of Course Outcomes and Program Outcomes for the subject Computer Network Lab (PCC-CS 692)

Course Outcomes						Progr	am Out	comes				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1		1					1					
CO2		1		1								
CO3							1					
CO4				1								

perCode (Name)	CO Number	Course Outcomes(CO)	ATTAINED
PROJ-CS601 Research Methodology	COI	Identifyanddiscusstheissues andconcepts salienttotheresearch process.	15%
	CO2	Analysisofcomplex issuesinherentin selectingaresearch problem, selectingan appropriateresearch design, and implementing aresearchproject.	20%
	CO3	Understand,compre hendand explainresearch articlesintheir academicdiscipline.	15%

CourseOut comes		ProgramOutcomes										
Comes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	101		100	10.	100	100	107	100	10)	1010	1011	1012
CO1		✓										
CO2		√		√								
CO3							√					

COAttainment

		<u>CO</u>	<u>Attainment</u>
	<u>CO1</u>	Design algorithm and implement C program using divide and conquer approach in Computer Science and Engineering and related fields.	15%
Design and Analysis of Algorithm Lab (PCC-CS494)	<u>CO2</u>	Design algorithm and implement C program using dynamic programming in Computer Science and Engineering and related fields.	15%
	<u>CO3</u>	Design algorithm and implement C program using branch and bound method in Computer Science and Engineering and related fields. App	5%
	<u>CO4</u>	Design algorithm and implement C program using backtracking in Computer Science and Engineering and related fields.	5%
	<u>CO5</u>	Design algorithm and implement C program using greedy method in Computer Science and Engineering and related fields.	10%
	<u>CO6</u>	Design Graph Traversal Algorithm and implement C program in Computer Science and Engineering and related fields.	15%

CO-PO Mapping:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1			$\sqrt{}$	$\sqrt{}$						V		
CO2			$\sqrt{}$	$\sqrt{}$						V		
CO3			$\sqrt{}$	$\sqrt{}$						V		
CO4				$\sqrt{}$						V		
CO5										V		

Course Name:	Image Processing
Course Code:	PEC-IT601D
Name of the Program:	B.Tech
Department	Computer Science Engineering

Semester	6 th Semester
Name of Faculty	Suman Halder

COURSE OUTCOME:

On successful completion of this course, students should be able to:

CO1	Review the fundamental concepts of a digital image processing system.
CO2	Analyze images in the spatial and frequency domain using various transforms.
CO3	Evaluate the techniques for image enhancement and image restoration.
CO4	Interpret image segmentation and representation techniques.

CO-PO Mapping:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1			$\sqrt{}$		$\sqrt{}$							
CO2	$\sqrt{}$	V			V							
CO3				V	V							
CO4				V	V							

Course Details

Course Name:	Pattern Recognition
Course Code:	PEC-IT602D
Name of the Program:	B.Tech
Department	Computer Science Engineering
Semester	6 th Semester
Name of Faculty	SD

COURSE OUTCOME:

On successful completion of this course, students should be able to:

CO1	Understand and compare a variety of pattern classification, structural pattern recognition and pattern classifier combination techniques.
CO2	Summarize, analyze, and relate research in the pattern recognition area verbally and in writing.
CO3	Apply performance evaluation methods for pattern and critique comparisons of techniques made in the research literature.
CO4	Apply pattern recognition techniques to real-world problems such as document analysis and recognition.
CO5	Implement simple pattern classifiers, classifier combinations and structural pattern recognizers.
CO6	Able to manipulate Bayes' Classifier and implement Decision Trees.

CO-PO Mapping:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1					V							
CO2												
CO3					V						$\sqrt{}$	
CO4					V						$\sqrt{}$	
CO5												

COAttain ment of Subjects

		<u>CO</u>	<u>Attainment</u>
	<u>CO1</u>	Understand and compare a variety of pattern classification, structural pattern recognition and pattern classifier combination techniques.	15%
	<u>CO2</u>	Summarize, analyze, and relate research in the pattern recognition area verbally and in writing.	15%
	<u>CO3</u>	Apply performance evaluation methods for pattern and critique comparisons of techniques made in the research literature.	5%
Pattern Recognition PEC-IT602D	<u>CO4</u>	Apply pattern recognition techniques to real-world problems such as document analysis and recognition.	15%
	<u>CO5</u>	Implement simple pattern classifiers, classifier combinations and structural pattern recognizers.	10%
	<u>CO6</u>	Able to manipulate Bayes' Classifier and implement Decision Trees.	5%

CO Attainment of Human Resource Development and Organizational Behavior(OEC-IT601B)

Paper Code(Name)	CO Number	CourseOutcomes(CO)	ATTAINED
OEC-IT601B	CO1	Understand the organizational structures, the Features and principles of organization. Analysis of the theories of motivation ,and Applying the knowledge in the organizational Level and in different socio-environmental Legal situations.	15%

Human Resource Development and Organizational Behavior	CO2	Understand and recognize different leadership in different social situations. Analysis of concept of Group Dynamic be done to the Students for their proper understanding and to apply in real-life scenarios.	15%
	CO3	Recognize the factors of organizational Change and its impact on business, better Understanding of the business environment With respect to resistance to change and apply The knowledge of it in different problems.	25%

 $Mapping\ of\ CourseOutcomes\ and\ ProgramOutcomes for\ the subject Human Resource Development and Organizational Behavior (OEC-IT 601B)$

CourseOut comes		ProgramO utcomes										
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1		✓		✓			✓					
CO2		✓		✓			✓					
CO3							√					✓

Cryptography & Network Security (CS801D)

Course Outcomes:

CO1: To be able to identify common network security vulnerabilities/attacks; explain the foundations of Cryptography and network security.

CO2: To be able to analyze the risks and threats to networked computers.

CO3: To be able to demonstrate detailed knowledge of the role of encryption to protect data.

CO4: To be able to analyze security issues arising from the use of certain types of technologies.

CO5: To be able to identify the appropriate procedures required to secure networks, system security testing and procedures of Backup and Recovery.

Paper Code(Name)	CO Number	CourseOutcomes(CO)	ATTAINED
	CO1	To be able to identify common network security vulnerabilities/attacks; explain the foundations of Cryptography and network security.	25%
OEC-IT601B HumanResource Developmentand OrganizationalBe havior	CO2	To be able to analyze the risks and threats to networked computers.	25%
	CO3	To be able to demonstrate detailed knowledge of the role of encryption to protect data.	20%

CO-PO Mapping:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1												
CO2				V								
CO3						V	V					

CO4							

Course Details:

Course Name:	E-Commerce & ERP
Course Code:	OEC-CS802A
Name of the Program:	B.Tech
Department	Computer Science Engineering
Semester	8 th Semester
Name of Faculty	SD

COURSE OUTCOME:

On successful completion of this course, students should be able to:

CO1	To identify and differentiate various types of Ecommerce.
CO2	To define and understand E-business and its Models.
CO3	To apply appropriate techniques and resources of Hardware and Software Technologies for
	Ecommerce.
CO4	To understand the basic concepts of ERP and identify different technologies used in ERP.
CO5	To apply different tools used in ER.

COAttainment

		<u>CO</u>	<u>Attainment</u>
	<u>CO1</u>	To identify and differentiate	10%
		various types of Ecommerce.	
	<u>CO2</u>	To define and understand E-	15%
E-Commerce & ERP		business and its Models.	
OEC-CS802A	<u>CO3</u>	To apply appropriate techniques	10%
		and resources of Hardware and	
		Software Technologies for	
		Ecommerce.	
	<u>CO4</u>	To understand the basic concepts	10%
		of ERP and identify different	
		technologies used in ERP.	
	<u>CO5</u>	To apply different tools used in	15%
		ER.	

CO-PO Mapping:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1				V								
CO2					√		$\sqrt{}$					
CO3	$\sqrt{}$				$\sqrt{}$	$\sqrt{}$					$\sqrt{}$	
CO4					V		V					
CO5					$\sqrt{}$	$\sqrt{}$					$\sqrt{}$	

PaperCode (Name)	CO Number	Course Outcomes(CO)	ATTAINED
OEC-CS801E,	CO1	Understand the importance of Behavioral aspects in the workplace	10%
Soft Skill &Interpersonal Communication	CO2	Recognize the conflict resolution skills at work	17%
	CO3	Understand the importance of Communication skills in daily life And at work	25%

Mapping of Course Outcomes and Program Outcomes for the subject Soft Skill & Interpersonal Communication (OEC-CS801E)

Course Outcomes		Program Outcomes										
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1							✓					
CO2												✓
CO3							√					

PAPER NAME	CO No.	Course Outcomes	Attainment
BIOLOGY (BSC-401)	CO1	Describe how biological observations of 18th century lead to major discoveries and understand that the classification of organisms is based on morphological, biochemical or ecological	10%

	parameters.	
CO2	Highlight the concepts of excessiveness and dominance during the passage of genetic material from parent to offspring.	24%
CO3	Convey that all forms of life have the same building blocks and yet the manifestations are diverse.	5%
CO4	Classify enzymes and distinguish between different mechanisms of enzyme action and identify DNA as a genetic material in the molecular basis of information transfer.	10%
CO5	Analyze biological processes at the reductionist level and apply thermodynamic principals to the biological systems.	10%

Mapping of Course Outcomes and Program Outcomes for the subject $BIOLOGY\ (BSC-401)$

Course Outcomes		Program Outcomes										
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1					✓		√					
CO2				✓			✓					✓
CO3		✓										✓
CO4												✓
CO4		√										

PO NO.	BROAD	ELABORATE
1	Engineering	
	knowledge	engineering fundan
2	Problem	Identify, formulate, research literature, and analyse complex
	analysis:	engineering problems reaching substantiated conclusions usi
3	Daniero/dayal	Decision colutions for complex engineering problems and deci-
3	Design/devel opment of	Design solutions for complex engineering problems and designable bealth and safety, and cultural, societal, and environments
4	Conduct	Use research-based knowledge and research methods include
-		interpretation of data, and synthesis of the information to prov
	s of complex	interpretation of data, and synthesis of the information to prov
5		Create, select, and apply appropriate techniques, resources,
	usage:	activities, with an understanding of the limitations.
6	The engineer	Apply reasoning informed by the contextual knowledge to ass
	and society:	the professional engineering practice.
7		Understand the impact of the professional engineering solutio
	and	development.
	sustainabilit	
8	Ethics:	Apply ethical principles and commit to professional ethics and
9	Individual	Function effectively as an individual, and as a member or lea
	and team	
	work:	
10	Communicat	Communicate effectively on complex engineering activities wi
	ion:	write effective reports and design documentation, make effect
11	Project	Demonstrate knowledge and understanding of t h e engineer
11		to manage projects and in multidisciplinary environments
12	Life-long	Recognise the need for, and have the preparation and ability
	learning:	. teeegee and need for, and have the proparation and ability
	ioai illigi	

PROGRAM SPECIFIC OUTCOMES

PSO1: Ability to apply the knowledge of Basic Computing, Basic Sciences and Social Sciences in the field of electrical engineering to identify, analyze and so life problems faced in industries and/or during research work.

PSO2: Ability to model, test, analyze and design components or processes rel modern power system involving both conventional and renewable energy resolvoltage systems and energy management.

PSO3: Ability to apply the concept of circuit theory, electromagnetic field thec and basic electronics to solve complex problems of electrical machines and dripower electronic converters and electrical system design.

PSO4: Ability to identify and analyze the role of measurement, instrumentatic modern control engineering to enhance sustainability, reliability and efficiency electrical systems.

PSO5: Ability to demonstrate proficiency in operating and handling modern er tools to cop up with dynamic industrial environment.

PSO6: Ability to work and communicate effectively in the corporate life keepir responsible outlook towards socio-economic and environmental issues.

JRSE OUTCOMES

Name

CO6	design filter circuits.
CO5	estimate parameters of two-port networks.
CO4	select suitable techniques of network analysis for efficient solution.
CO3	apply network theorems and different tools to solve network problems.
CO2	explain different network theorems, coupled circuit and tools for solution
CO1	describe different type of networks, sources and signals with examples.

Naı

CO1	1. describe analog electronic components and analog electronics circuits
CO2	2. explain principle of operation of analog electronic components, filters, I
CO3	3. compute parameters and operating points of analog electronic circuits.
CO4	4. determine response of analog electronic circuits.
CO5	5. distinguish different types amplifier and different types oscillators base
CO6	6. construct operational amplifier based circuits for different applications.

Name of

CO1	1. Relate different coordinate systems for efficient solution of electromagi
CO2	2. describe mathematical s tools to solve electromagnetic problems.
CO3	3. explain laws applied to electromagnetic field.
CO4	4. apply mathematical tools and laws to solve electromagnetic problems.
CO5	5. analyze electromagnetic wave propagation
CO6	6. estimate transmission line parameters

Nam

Course	After completing this course, the students will be able to:
CO1	explain the co-ordinate system, principle of three dimensional rotation, kir
CO2	elaborate the theory of general motion, bending moment, torsional motio
CO3	develop free body diagram of different arrangements.

CO4	solve problems with the application of theories and principle of motion , f
CO5	analyze torsional motion and bending moment.
CO1	explain basics of probability theories, rules, distribution and properties of
CO2	describe different methods of numerical analysis.
СОЗ	solve numerical problems based on probability theories , numerical analy
CO4	apply numerical methods to solve engineering problems.
CO5	5. solve engineering problems using z transform and probability theory.
	Nan
Course	Upon completion of this course, students will be able to:
CO1	Describe with examples the biological observations lead to major discover
CO2	Explain the classification of kingdom of life the building blocks of life
CO3	Different techniques of bio physics used to study biological phenomena.
CO4	The role of imaging in the screening, diagnosis, staging, and treatments
CO5	Identify DNA as a genetic material in the molecular basis of information
CO6	Analyze biological processes at the reductionistic level.
CO7	Apply thermodynamic principles to biological systems.
CO8	Identify microorganisms
	Na
Course	After completing this course, the students will be able to:
CO1	Describe different features of Indian constitution. Power and functioning of
CO2	Identify authority to redress a problem in the profession and in the socie
	Nama
	Name o
_	
Course	Up
CO1	Determine transient response of different electrical circuit, frequency res
CO2	Generate different signals in both discrete and analog form
CO3 CO4	Analyze amplitude and phase spectrum of different signals.
CO5	Verify network theorems.
CO5	Construct circuits with appropriate instruments and safety precautions.
CUS	Simulate electrical circuit experiments using suitable software. Name
	Name
C 2	
Course	Up

Course	Up
	At
CO1	Determine characteristics of full wave rectifier with filter and without filte
CO2	Verify function of DAC and ADC
CO3	Construct function generator using IC, R-C coupled amplifier, linear voltage

CO4	Work in a team
CO5	Validate theoretical learning with practical Special Remarks: The above-m
	Name

Course	Upon successful completion of the course, student will have:
CO1	Solve problems with Newton forward /backward, Lagrange's interpolation
CO2	problems of numerical integration using Trapezoidal rule, Simpson's 1/3
CO3	rule, Weddle's rule problems to find numerical solution of a system of line
CO4	Gauss elimination and Gauss-Seidel iterations. problems to find numerical
CO5	Ordinary differential equation by Euler's and Runga-Kutta methods.
CO6	Find appropriate numerical methods to solve engineering problems.
CO7	Use software package to solve numerical problems.

Na

Course	Up
CO1	Describe the function of different components of magnetic circuit, DC mag
CO2	Explain the principle of operation of different types of DC machines and tr
CO3	Solve numerical problems of DC machines and transformers.
CO4	Estimate the parameters and efficiency of transformer.
CO5	Determine the characteristics of DC machines
CO6	recommend methods to control output of DC machines.

Nan

Course	Up
CO1	Describe the function of different building blocks of digital electronics, ser
CO2	Explain the principle of operation of combinational and sequential digital of
CO3	Solve numerical problems of Boolean algebra, number system, combinati
CO4	Specify applications of combinational and sequential digital circuits.
CO5	Determine specifications of different digital circuits.
CO6	Design combinational and sequential digital circuits

Name of the S

Course	Up
CO1	Explain the terms accuracy, precision, resolution, speed of response, erro
CO2	Describe methods of measurement of power, energy by instruments and
CO3	Explain the principle of operation of analog meters, instrument transform
CO4	Explain the different building block, principle of operation of oscilloscope a
CO5	Solve numerical problems related to analog meters, instrument transform
CO6	Specify applications of analog and digital measuring instruments, sensors
	Name or
_	

Course	Upon successful completion of the course, student will have:

201	
CO1	Describe the function of different components of boilers. Engines and turk
CO2	Explain the principle of operation of different types of boilers, turbines, IC
CO3	Solve numerical problems of boilers, turbines, IC engines and Gas turbine
CO4	Analyze the performance of boilers, engines and turbines.
CO5	Determine efficiency of boilers, engines and turbines.
CO6	Explain methods to control boiler, engines and turbines parameters.
	Name of t
	Name of t
Course	Upon successful completion of the course, student will have:
Course CO1	
	Upon successful completion of the course, student will have:
CO1	Upon successful completion of the course, student will have: 1. Illustrate different aspects of human values, ethics, engineers' respons
CO1 CO2	Upon successful completion of the course, student will have: 1. Illustrate different aspects of human values, ethics, engineers' respons 2. Explain different principles, different theories and laws of engineering e
CO1 CO2 CO3	Upon successful completion of the course, student will have: 1. Illustrate different aspects of human values, ethics, engineers' respons 2. Explain different principles, different theories and laws of engineering e 3. Identify different factors in the light of Engineers' responsibility toward

Course	Upon successful completion of the course, student will have:
CO1	Understand the natural environment and its relationships with human ac
CO2	Apply the fundamental knowledge of science and engineering to assess ϵ
CO3	Develop guidelines and procedures for health and safety issues obeying the
CO4	Acquire skills for scientific problem-solving related to air, water, noise& la
	Name of t

Course	Upon successful completion of the course, student will have:
CO1	Identify appropriate equipment and instruments for the experiment.
CO2	Test the instrument for application to the experiment.
CO3	Construct circuits with appropriate instruments and safety precautions
CO4	Validate different characteristics of DC machine, methods of speed contr
CO5	Work effectively in a team

Name of t

Upon successful completion of the course, student will have:
Identify appropriate equipment and instruments for the experiment
2. Test the instruments for application to the experiment
3. Construct decoder, multiplexer, adder and subtractor circuits with app
4. Realize RS-JK and D flip flop, universal register with gates, multiplexer
5. Validate the operation of code conversion circuit –BCD to Excess 3 & v
Work effectively in a team

Name of the Subject

Course	Upon successful completion of the course, student will have:
	1. identify appropriate equipment and instruments for the experiment

2. test the instrument for application to the experiment
3. construct circuits with appropriate instruments and safety precautions
4. evaluate and adjust the precision and accuracy of AC energy meter, m
5. measure voltage, current, power, energy, phase, frequency, resistance
6. work effectively in a team

Name of the 5

Upon successful completion of the course, student will have:
Identify appropriate equipment and instruments for the experiment
Construct experimental setup with appropriate instruments and safety pr
Identify different parts of Lanchashire Boiler, Bahcock & Willcox Boiler, Co
Test 4 stroke petrol engine by electrical load box and diesel engine by ele
Find calorific value, flash point, fire point, cloud point, pour point of fuel.
Work effectively in a team

Name of t

Course	On successful completion of the course the student will be able to:
	1. To understand the arrangement of windings of AC machines.
	2. To understand the principle of production of pulsating and revolving m
	3. To understand the principle of operation and characteristics of three pl
	4. To understand the principle of operation and characteristics of single p
	5. To understand the principle of operation and characteristics of synchro
	6. To understand the principle of operation and characteristics of special
	7. To solve problems of Induction machines, synchronous machines and s

Course After completion of this course the students will be able to:

To understand the basic principle of generation of Electricity from differer

To find parameters and characteristics of overhead transmission lines and

To find different parameters for the construction of overhead transmission

To determine the performance of transmission lines.

To understand the principle tariff calculation.

To solve numerical problems on the topics studied.

Course	On completion of this course a student will be in a position to:
CO1	1. To find mathematical representation of LTI systems.
CO2	2. To find time response of LTI systems of different orders
CO3	3. To find the frequency response of LTI systems of different orders
CO4	4. To understand stabilityof differentLTI systems.
CO5	5. To analyze LTIsystems with state variables.
CO6	6. To solve problems of mathematical modelling and stability of LTI syste

Course	On completion of this course a students will be able to
CO1	To understand the functioning and characteristics of power switching dev
CO2	To understand the principle of operation of converters.
CO3	To understand different triggering circuits and techniques of commutation
CO4	To find external performance parameter of converters.
CO5	To analyze methods of voltage control, improvement of power factor and
CO6	To solve numerical problems of converters

Name of

Course	After completion of the course, the students will be able to:
CO1	identify appropriate equipment and instruments for the experiment.
CO2	test the instrument for application to the experiment.
CO3	construct circuits with appropriate instruments and safety precautions.
CO4	validate different characteristics of single phase Induction motor, three pl
CO5	work effectively in a team

Name (

Course	On completion of this course a students will be able to
CO1	identify appropriate equipment and instruments for the experiment.
CO2	test the instrument for application to the experiment.
CO3	3. construct circuits with appropriate instruments and safety precautions.
CO4	4. validate different characteristics of transmission line.
CO5	5. determine earth resistance, dielectric strength of insulating oil, breakd
CO6	6. analyze an electrical transmission line circuit with the help of software
CO7	7. work effectively in a team
CO4 CO5 CO6	4. validate different characteristics of transmission line.5. determine earth resistance, dielectric strength of insulating oil, bre6. analyze an electrical transmission line circuit with the help of softw

Name c

After completion of this course the students will be able to
identify appropriate equipment and instruments for the experiment.
test the instrument for application to the experiment.
construct circuits with appropriate instruments and safety precautions.
use MAT-Lab control system tool box, MAT-Lab- simulink tool box & PSP
5. determinecontrol system specifications of first and second order syster

Name of

Course	On completion of this course a students will be able to
CO1	identify appropriate equipment and instruments for the experiment.
CO2	test the instrument for application to the experiment.
CO3	construct circuits with appropriate instruments and safety precautions

Name o

Course	On completion of this course a student will be in a position to:
CO1	differentiate how the choices of data structure & algorithm methods enha
CO2	solve problems based upon different data structure & also write programs
CO3	write programs based on different data structure
CO4	identify appropriate data structure & algorithmic methods in solving probl
CO5	discuss the computational efficiency of the principal algorithms for sorting
CO6	comparethe benefits of dynamic and static data structures implementatio
	Name of

Name of

v	ea	۳.	3rd	
	Ca		JIU	

Course	After completion of this course the students will be able to
CO1	specify simple abstract data types.
CO2	recognise features of object-oriented design such as encapsulation, polyn
CO3	inheritance, and composition of systems based on object identity.
CO4	apply common object-oriented design patterns
CO5	specify uses of common object oriented design patterns with examples.
CO6	design applications with an event-driven graphical user interface.

Course	After completion of the course, the students will be able to:
Course	Arter completion of the course, the students will be able to.
CO1	Represent power system components in line diagrams.
CO2	Determine the location of distribution substation.
CO3	Determine the performance of power system with the help of load flowv s
CO4	Analyse faults in Electrical systems.
CO5	Determine the stabilty of Power system.
CO6	Explain principle of operation of different power system protection equipn
CO7	Solve numerical problems related to representation, load flow, faults, stal
	Name of the

Name of the

Year: 3 rd	
Course	After completion of the course, the students will be able to
CO1	1. explain the architecture of 8086 and 8051.
CO2	2. do assembly language programming of 8086, 8051
CO3	3. interface different peripheral with 8086 and 8051
CO4	4. develop micro processor/ microcontroller based systems.
CO5	5. compare microprocessor, microcontroller, PIC and ARM processors
	A.I

Name

Course	On completion of this course a students will be able to
CO1	explain the principle of sampling and reconstrction of analog signal. syst
CO2	perform Z-transformation and inverse Z-tranaformation of systems.
CO3	analyse and design digital control
CO4	design compensators for digital control system to achieve desired specifi

CO5	represent digital control systems using state space models.
CO6	analyze the effect sampling on stability, controllability and observability
	Na

CO1 choose intelligently AC and DC transmission systems for the dedicated at identify the suitable two-level/multilevel configuration for high power cor select the suitable protection method for various converter faults.

CO4 4. identify suitable reactive power compensation method.

CO5 5. decide the configuration for harmonic mitigation on both AC and DC sides of the configuration of the converters, power flow analysis, respectively.

Name

Course	After completion of this course the students will be able to
CO1	specify the rating of electrical machines with standard specifications.
CO2	explain the principles of electrical machine design and carry out basic des
CO3	3. determine the various factors which influence the design of electrical, r
CO4	4. explain the construction and performance characteristics of electrical n
CO5	5. use software tools to do design calculations.

Name of

Course	On completion of this course a students will be able to
CO1	explain the principle of Electric traction.
CO2	choose a suitable drive scheme for developing an electric hybrid vehicle d
CO3	design and develop basic schemes of electric vehicles and hybrid electric
CO4	choose proper energy storage systems for vehicle applications
CO5	implement different energy management strategies for hybrid vehicle.

Nam₍

Course	analyse uncompensated AC transmission line.				
Outcomes	explain the working principles of FACTS devices and their operating chara				
	3. apply FACTS devices for power flow control and stabilty.				
	4. identify different issues of power quality in distribution system.				
	5. apply different compensation and control techniques for DSTATCOM6.				
Name of the	e Subject: INDUSTRIAL ELECTRICALSYSTEMS				
Subject Cod	le: PE-EE-602C				
Year: 3 rd					
Course	1. Represent electrical wiring system for residential, commercial and indu				
Outcomes	2. Determine the rating of components of residential and commercial elec				
	3. Design lighting scheme for a residential and commercial premises.				
	4. Select transformer, switchgear, protection equipments for industrial ele				
	5. explain methods of automation of Industrial Electrical Systems				
	6. Solve numerical problems related to earthing system, lighting scheme,				

Name of the Subject: DIGITAL SIGNALPROCESSING Subject Code: PE-EE-601A Year: 3rd Course 1. represent signals mathematically in continuous and discrete-time and i Outcomes 2. analyse discrete-time systems using z-transform. 3. explain the Discrete-Fourier Transform (DFT) and the FFT algorithms. 4. design digital filters for various applications. 5. apply digital signal processing for the analysis of real-life signals. Name of the Subject: COMMUNICATION ENGINEERING **Subject Code:** PE-EE-601B Year: 3rd Course 1. compare the performance of AM, FM and PM schemes with reference to Outcomes 2. explain noise as a random process and its effect on communication rec 3. evaluate the performance of ASK, FSK, PSK, BPSK, QPSK in a digital co 4. identify source coding and channel coding schemes for a given commu 5. analyze various digital modulation methods 6. compute band width requirement and probability of error in various dic Name of the Subject: VLSI AND MICROELECTRONICS Subject Code: PE-EE-603C Year: 3rd 1. explain the principle of design of VLSI circuits Course **Outcomes** 2. explain different MOS structure with characteristics 3. apply different processes for VLSI fabrication 4. use programming language for the design of logic circuits 5. draw the stick diagram and layout for simple MOS circuits Name of the Subject: ECONOMICS FOR ENGINEERS **Subject Code:** HM-EE-601 Year: 3rd Course 1. evaluate the economic theories, cost concepts and pricing policies **Outcomes** 2. explain the market structures and integration concepts 3. apply the concepts of financial management for project appraisal 4. explain accounting systems, the impact of inflation, taxation, deprecia 5. analyze financial statements using ratio analysis 6. explain financial planning, economic basis for replacement, project sch Name of the Subject: POWER SYSTEM-II LABORATORY **Subject Code:** PC-EE 691 Year: 3rd Course 1. Identify appropriate equipment and instruments for the experiment. 2. Test the instrument for application to the experiment. **Outcomes** 3. Construct circuits with appropriate instruments and safety precautions 4. Validate the characteristics of under voltage relay, over current relay, 5. Validate protection schemes of transformer, generator, motor and feed 7. work effectively in a team Name of the Subject: MICRO PROCESSOR AND MICRO CONTROLLERLABORATORY Subject Code: : PC-EE 692 Year: 3rd 1. identify appropriate equipment and instruments for the experiment Course

- **Outcomes** 2. test the instrument for application to the experiment
 - 3. construct circuits with appropriate instruments and safety precautions
 - 4. program 8086 for arithmatic operation, sorting of array, searching for
 - 5. interface ADC/DAC, 8255, 8251 to 8086 and LCD, keyboard to 8051
 - 6. program 8051 using arithmatic, logical and bit manipulation instruction
 - 7. work effectively in a team

Name of the Subject: ELECTRICAL AND ELECTRONICS DESIGNLABORATORY

Subject Code: PC-EE 681

Year: 3rd

Course Outcomes

- 1. explain basic concept of measurement, noise in electronic system, sens
- 2. implement PC based data acquisition systems
- 3. construct circuits with appropriate instruments and safety precautions
- 4. design heating elements, air core grounding reactor, power distribution
- 5. do wiring and installation design of a multistoried residential building w
- 6. design electronic hardware for controller of lift, speed of AC/DC motor,

Name of the Subject: ELECTRIC DRIVE

Subject Code: PC-EE 701

Year: 4[™]

Course **Outcomes**

- 1. Explain the principle of operation of Electric Drive.
- 2. Describe different methods of starting and braking of Electric Drive.
- 3. Model and control DC Drive
- 4. Control speed of Induction and Synchronous motors.
- 5. Recommend drives for different applications.
- 6. Estimate ratings, variables and parameters of Electric Drives.

Name of the Subject: CONTROL SYSTEM DESIGN

Subject Code: PE-EE 701 A

Year: 4[™]

Course **Outcomes**

- 1. explain the effect of gain, addition of pole and zeros on system's performance of the system's performance of t
- 2. describe time domain and frequency domain design specifications.
- 3. demonstrate the effect of nonlinearity on system performance.
- 4. design control system in time domain, in frequency domain and in sta
- 5. design PID controllers.
- 6. select appropriate method for design of control system.

Name of the Subject: ELECTRICAL ENERGY CONSERVATION& AUDITING

Subject Code: : PE-EE 701B

Year: 4[™]

Course **Outcomes**

- 1. explain the basic of energy resources, energy security, energy conserv
- 2. quantify the energy conservation opportunities in different thermal sys
- 3. quantify the energy conservation opportunities in different electrical sy
- 4. identify the common energy conservation opportunities in different ene
- 5. explain the methods of energy management and audit.
- 6. analyse and report the outcome of energy audit

Name of the Subject: POWER GENERATION ECONOMICS

Subject Code: : PE-EE 701C

Year: 4[™]

Course

1. explain the different terms e.g. load factor etc for economics of genera

2. apply different types of tariff for electricity pricing. Outcomes 3. optimize the operation of power system with unit commitment. 4. determine generation levels such that the total cost of generation beco 5. determine the state of the system given by the voltage magnitudes an 6. predict the power or energy needed to balance the supply and load del Name of the Subject: ARTIFICIAL INTELLIGENCE Subject Code: OE-EE-701A Year: 4[™] Course 1. explain the concept of knowledge representation and predicate logic ar **Outcomes** 2. describe state space and its searching strategies 3. demonstrate proficency in applying scientific method to models of mach 4. apply the machine learning concepts in real life problems 5. demonstrate an ability to share in discussions of AI, its current scope a Name of the Subject: INTERNET OF THINGS Subject Code: OE-EE-701B Year:4[™] 1. explain the definition and usage of the term "Internet of Things" in different terms of the term th Course Outcomes 2. explain the key components that make up an IoT system. 3. differentiate between the levels of the IoT stack and be familiar with t 4. build and test a IoT system involving prototyping, programming and date 5. apply cloud computing and data analytics in a typical IoT system Name of the Subject: COMPUTER GRAPHICS Subject Code: OE-EE-701C Year: 4[™] 1. explain Computer graphics and graphic systems. Course 2. test and implement line drawing algorithm, circle and ellipse drawing a Outcomes 3. Perform 2D and 3D transformation and viewing. 4. apply algorithms for visible surface determination. 5. explain colors and shading models and ray tracing. Name of the Subject: EMBEDDED SYSTEM **Subject Code:** OE-EE 702A Year: 4[™] 1. discuss the definition, purpose, application, classification, quality char-Course 2. explain the internal structure of the Embedded system. **Outcomes** 3. interface IO devices and other peripherals with micro controllers in Em 4. write programs for Micro controllers in Embedded systems. 5. apply the concept of Embedded firmware in design of Embedded system Name of the Subject: DIGITAL IMAGE PROCESSING Subject Code: OE-EE 702B Year: 4[™] Course 1. explain the fundamental concepts of a digital image processing system Outcomes 3. apply different image segmentation techniques. 4. categorize various compression techniques. 5. implement image process and analysis algorithms. 6. apply image processing algorithms in practical applications. Name of the Subject: COMPUTER NETWORK

Subject Code: : OE-EE 702C

Year: 4 TH						
Course	1. explain the concepts of data communication and networking.					
Outcomes	2. identify the different types of network topologies and protocols.					
	3. describe the function of a network system with OSI and TCP/IP model					
	4. differentiate different types of routing protocol.					
	5. apply principles of congestion control .					
	6. implement different schemes for security of the networks.					
Name of the	e Subject: PRINCIPLE OF MANAGEMEENT					
	le: : HM-EE 701					
Year: 4 [™]						
Course	1. explain the concepts and approaches of management.					
Outcomes	2. demonstrate the roles, skills and functions of management.					
	3. diagnose and solve organizational problems.					
	4. identify the complexities associated with management of human resou					
	5. apply different methods of Customer, Operation and Technology mana					
	6. acquire skills of good leader in an organization.					
Name of the	e Subject: ELECTRIC DRIVE LABORATORY					
	le: PC-EE 791					
Year: 4 [™]						
Course	1. identify appropriate equipment and instruments for the experiment.					
Outcomes	2. test the instrument for application to the experiment.					
	3. construct circuits with appropriate instruments and safety precautions					
	4. apply different methods of control of Electric Drive in the laboratory.					
	5. analyse experimental data obtained in the laboratory.					
	6. work effectively in a team					
Name of the	e Subject: UTILIZATION OF ELECTRIC POWER					
	le: : PC-EE 801					
Year: 4 [™]						
Course	1. explain the fundamentals of illumination and different lighting schemes					
Outcomes	3. able to select appropriate lighting, heating and welding techniques for					
	4. apply different electrolysis process for different applications.					
	5. explain the principle of different aspect of Electric traction and control					
Name of the	e Subject: LINE COMMUTATED AND ACTIVE PWM RECTIFIERS					
	de: PE-EE 801A					
Year: 4 TH						
Course	1. explain the principle of operation of different converters.					
Outcomes	2. suggest the application of different filters.					
	3. apply converters for different applications.					
	4. analyze converter circuits.					
	5. develop appropriate scheme for control of different converters.					
	6. solve numerical problems relating to different converters.					
Name of the	e Subject: POWER SYSTEM DYNAMICS AND CONTROL					
	de: PE-EE 801B					
Year: 4 TH	IC. FL-LL OUID					
Course	1. explain the model of power system components					
Outcomes	2. select the appropriate model for required analysis.					
	3. analyze the performance of the system with small signal analysis.					

4. evaluate the stability of the single and multi machine systems. 5. develop measures for enhancing the stability of the system. 6. Solve numerical problems of linear dynamical system, modeling of diffe Name of the Subject: ADVANCED ELECTRIC DRIVE Subject Code: PE-EE 801C Year: 4TH 1. explain the principle of operation of converters for AC drives. Course **Outcomes** 2. model Induction and Synchronous motor by reference frame theory. 3. apply different control methods to control speed and torque of Inductic 4. explain the configurations and method of speed control of BLDC, PMSM 5. realize basic blocks for DSP based motion control. 6. develop appropriate scheme for speed control of Induction and Synchri Name of the Subject: INDUSTRIAL AUTOMATION AND CONTROL **Subject Code:** : PE-EE 801D Year: 4TH Course 1. explain the basic structure of industrial automation and control 2. classify different types of control actions of controllers. **Outcomes** 3. analyze control strategies of different processes of industry. 4. illustrate the construction and use of different types of actuators and c 5. use PLC, DCS and SCADA in advanced industrial control. Name of the Subject: SOFT COMPUTING TECHNIQUES Subject Code: OE-EE 801A Year: 4[™] 1. explain soft computing techniques and their roles in building intelligent Course **Outcomes** 2. anlyse the feasibility of application of soft computing techniques for a r 3. effectively use existing software tools to solve real problems using a sc 4. evaluate solutions by various soft computing approaches for a given pr 5. apply different soft computing techniques to solve Engineering problem Name of the Subject: BIOMEDICAL INSTRUMENTATION Subject Code: OE-EE 801B Year: 4[™] 1. describe the principle of medical transducers for temperature, pressure Course **Outcomes** 2. explain the principle of operation of Biomedical recorders, Medical Ima-3. use different Medical laboratory equipments for different tests. 4. analyze any measurement application and suggest suitable measurem 5. suggest suitable imaging methodology for a specific ailment. Name of the Subject: INTRODUCTION TO MACHINE LEARNING **Subject Code:** OE-EE 801C Year: 4[™] 1. explain the basics concepts and classification of Machine Learning. Course **Outcomes** 2. write simple programs using python. 3. describe Supervised Learning concepts. 4. explain the concept of Support Vector Machine. 5. describe unsupervised learning concepts and dimensionality reduction 6. apply Machine Learning in a range of real-world applications.

Name of the Subject: SENSORS AND TRANSDUCERS

Subject Code: OE-EE 801D

Course Outcomes

- 1. explain the basic principle of operation of Transducers and Sensors.
- 2. distinguish different sensors and transducers.
- 3. identify suitable transducer by comparing different industrial standards
- 4. estimate the performance of different transducers.
- 5. design real life electronics and instrumentation measurement systems

PROGRAMME OUTCOMES (PO) BASED ON G.A.

		PO1	PO2	PO3	PO4
Course	CO1	0.67	0.67	0.67	0.67
Outcomes	CO2	0.67	0.67	0.67	0.67
	CO3	0.67	0.67	0.67	
	CO4	0.67	0.67	0.67	0.67
	CO5	0.67	0.67	0.67	
	CO6	0.67	0.67	0.67	0.67
Course	CO1	0.66	0.66	0.66	0.66
Outcomes	CO2	0.66	0.66	0.66	0.66
	CO3	0.66	0.66	0.66	
	CO4	0.66	0.66	0.66	0.66
	CO5	0.66	0.66	0.66	
	CO1	0.74	0.74	0.74	0.74
Course	CO2	0.74	0.74	0.74	0.74
Outcomes	CO3	0.74	0.74	0.74	0.74
	CO4	0.74	0.74	0.74	0.74
	CO5	0.74	0.74	0.74	0.74
	CO6	0.74	0.74	0.74	0.74

	CO1	0.77	0.77	0.77	0.77
Course	CO2	0.77	0.77	0.77	0.77
Outcomes	CO3	0.77	0.77	0.77	0.77
Outcomes	CO4	0.77	0.77	0.77	0.77
	CO5	0.77	0.77		0.77
	CO1	0.78	0.78		0.78
	CO2	0.78	0.78		0.78
Course	CO3	0.78	0.78		0.78
Outcomes	CO4	0.78	0.78		0.78
• accomes	CO5	0.78	0.78		0.78
	CO6	0.78	0.78		0.78
	CO1	0.75			
	CO2	0.75			0.75
Course	соз	0.75			0.75
Outcomes	CO4	0.75			0.75
	CO5	0.75			0.75
	CO6	0.75			0.75
	CO1	0.92			
	CO2				
Course	CO1	0.9	0.9	0.9	0.9
Outcomes	CO2	0.9	0.9	0.9	0.9
	CO3	0.9	0.9	0.9	
	CO4	0.9	0.9	0.9	0.9
	CO5	0.9	0.9	0.9	
	CO6	0.9	0.9	0.9	0.9
Course	CO1	0.89	0.89	0.89	0.89
Outcomes	CO2	0.89	0.89	0.89	0.89
	CO3	0.89			
	CO4	0.89	0.89	0.89	0.89
	CO5	0.89			
	CO1	0.84			0.84
Course	CO2	0.84			0.84
Outcomes	CO3	0.84			0.84
	CO4	0.84			0.84
	CO5	0.84			0.84
	CO6	0.84			0.84
	CO1	0.87	0.87	0.87	0.87
Course	CO2	0.87	0.87	0.87	0.87
Outcomes	CO3	0.87	0.87		
	CO4	0.87			
	CO5	0.87	0.87		0.07
	CO6	0.87	0.87		0.87
	CO1	0.76			
Course	CO2 CO3	0.76 0.76			
Outcomes	CO4	0.76			
	CO5	0.76			
		0.76	0.76	0.76	0.76

	CO6	0.76	0.76	0.76	0.76
	CO1	0.72	0.72	0.72	0.72
Course	CO2	0.72	0.72	0.72	
Outcomes	CO3	0.72	0.72	0.72	
Outcomes	CO4	0.72			
	CO5	0.72			0.72
	CO6	0.72	0.72	0.72	
	CO1	0.71	0.71	0.71	0.71
Course	CO2	0.71	0.71		
Outcomes	CO3	0.71	0.71	0.71	
outcomes	CO4	0.71			
	CO5	0.71			0.71
	CO6	0.71	0.71	0.71	0.71
	CO1	0.88	0.88	0.88	0.88
Course	CO2	0.88	0.88	0.88	
Outcomes	соз	0.88	0.88	0.88	
	CO4	0.88			
	CO5	0.88			0.88
	CO6	0.88	0.88	0.88	0.88
	CO1	0.95	0.95	0.95	0.95
Course	CO2	0.95	0.95	0.95	
Outcomes	CO3	0.95	0.95	0.95	
	CO4	0.95			
	CO5	0.95			0.95
	CO6	0.95	0.95	0.95	0.95
	CO1	0.76	0.76	0.76	0.76
Course	CO2	0.76	0.76		
Outcomes	CO3	0.76	0.76	0.76	
	CO4	0.76			
	CO5	0.76			0.76
	CO6	0.76	0.76	0.76	0.76
	CO1	0.92	0.92	0.92	0.92
Course	CO2	0.92	0.92	0.92	
Outcomes	CO3	0.92	0.92	0.92	
	CO4	0.92			
	CO5	0.92			0.92
	CO6	0.92	0.92	0.92	0.92
	CO1	0.91	0.91	0.91	0.91
Course	CO2	0.91	0.91	0.91	
Outcomes	CO3	0.91	0.91	0.91	
	CO4	0.91			
	CO5	0.91			0.91
	CO6	0.91	0.91	0.91	0.91
	CO1	0.87	0.87	0.87	0.87
Course	CO2	0.87	0.87	0.87	
Outcomes	CO3	0.87	0.87	0.87	
_					

	CO5	0.87			0.87
	CO6	0.87	0.87	0.87	0.87
	CO1	0.67	0.67	0.67	
Course	CO2	0.67			0.67
Outcomes	CO3	0.67			0.67
outcomes	CO4				0.67
	CO5		0.67	0.67	
	CO6	0.67	0.67	0.67	
	CO1	0.84	0.84	0.84	
Course	CO2	0.84			0.84
Outcomes	CO3	0.84			0.84
Outcomes	CO4				0.84
	CO5		0.84	0.84	
	CO6	0.84	0.84	0.84	
	CO1	0.71	0.71	0.71	
Course	CO2	0.71			0.71
Outcomes	соз	0.71			0.71
	CO4				0.71
	CO5		0.71	0.71	
	CO6	0.71	0.71	0.71	
	CO1	0.92	0.92	0.92	
Course	CO2	0.92			0.92
Outcomes	CO3	0.92			0.92
outcomes	CO4				0.92
	CO5		0.92	0.92	
	CO6	0.92	0.92	0.92	
	CO1	0.63	0.63	0.63	
Course	CO2	0.63			0.63
Outcomes	CO3	0.63			0.63
	CO4				0.63
	CO5		0.63	0.63	
	CO6	0.63	0.63	0.63	
	CO1	0.87	0.87	0.87	
Course	CO2	0.87			0.87
Outcomes	CO3	0.87			0.87
	CO4				0.87
	CO5		0.87	0.87	
	CO6	0.87	0.87	0.87	
	CO1	0.68	0.68	0.68	
Course	CO2	0.68			
Outcomes	CO3	0.68			
	CO4				
	CO5		0.68	0.68	
	CO6	0.68		0.68	
	CO1	0.83	0.83	0.83	
Course	CO2	0.83			
Outcomes	CO3	0.83			

	CO4	I	Ī	1	1
	CO5		0.83	0.83	
	CO6	0.83	0.83	0.83	
	CO1	NA	NA	NA	NA
Course	CO2	NA	NA	NA	NA
Outcomes	соз	NA	NA	NA	NA
Outcomes	CO4	NA	NA	NA	NA
	CO5	NA	NA	NA	NA
	CO6	NA	NA	NA	NA
	CO1		0.83	0.83	0.83
Course	CO2	0.83	0.83		
Outcomes	соз	0.83	0.83		
	CO4	0.83			
	CO5	0.83		0.83	0.83
	CO6	0.83	0.83	0.83	0.83
	CO1	0.71	0.71	0.71	0.71
Course	CO2	0.71	0.71		
Outcomes	соз	0.71	0.71		
Outcomes	CO4	0.71			
	CO5	0.71		0.71	0.71
	CO6	0.71	0.71	0.71	0.71
	CO1	0.68	0.68	0.68	0.68
Course	CO2	0.68	0.68		
Outcomes	CO3	0.68	0.68		
Gutcomes	CO4	0.68			
	CO5	0.68		0.68	0.68
	CO6	0.68	0.68	0.68	0.68
	CO1	NA	NA	NA	NA
Course	CO2	NA	NA	NA	NA
Outcomes	соз	NA	NA	NA	NA
Outcomes	CO4	NA	NA	NA	NA
	CO5	NA	NA	NA	NA
	CO6	NA	NA	NA	NA
	CO1	0.73	0.73	0.73	0.73
Course	CO2	0.73	0.73		
Outcomes	CO3	0.73	0.73		
outcomes	CO4	0.73			
	CO5	0.73		0.73	0.73
	CO6	0.73	0.73	0.73	0.73
	CO1	0.89	0.89	0.89	0.89
Course	CO2	0.89	0.89		
Outcomes	CO3	0.89	0.89		
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	CO4	0.89			
	CO5	0.89		0.89	0.89
	CO6	0.89	0.89	0.89	0.89
	CO1	0.65	0.65	0.65	0.65
Course	CO2	0.65	0.65		

Outcomes Cos	
C06	
COURSE CO2	0.65
Course Outcomes CO2 0.89 0.89 0.89 CO4 0.89 0.89 0.89 0.89 CO5 0.89 0.89 0.89 0.89 CO6 0.89 0.89 0.89 0.89 CO1 0.92 0.92 0.92 0.92 COurse CO3 0.92 0.92 0.92 0.92 CO4 0.92 0.92 0.92 0.92 CO5 0.92 0.92 0.92 0.92 CO6 0.92 0.92 0.92 0.92 CO1 0.68 0.68 0.68 0.68 CO2 0.68 0.68 0.68 0.68 CO4 0.68 0.68 0.68 0.68 CO4 0.68 0.68 0.68 0.68 CO4 0.68 0.68 0.68 0.68 CO5 0.68 0.68 0.68 0.68 CO6 0.68 0.68 0.68 <	0.65
Outcomes CO3 0.89 0.89 0.89 CO4 0.89 0.89 0.89 0.89 CO5 0.89 0.89 0.89 0.89 CO1 0.92 0.92 0.92 0.92 COurse CO2 0.92 0.92 0.92 CO3 0.92 0.92 0.92 0.92 CO4 0.92 0.92 0.92 0.92 CO5 0.92 0.92 0.92 0.92 CO6 0.92 0.92 0.92 0.92 CO1 0.68 0.68 0.68 0.68 CO4 0.92 0.92 0.92 0.92 CO1 0.68 0.68 0.68 0.68 CO4 0.68 0.68 0.68 0.68 CO4 0.68 0.68 0.68 0.68 CO5 0.68 0.68 0.68 0.68 CO6 0.68 0.68 0.68 0.68	0.89
Outcomes Co3 0.89 0.89 0.89 Co4 0.89 0.89 0.89 0.89 Co5 0.89 0.89 0.89 0.89 Co6 0.89 0.89 0.89 0.89 Co1 0.92 0.92 0.92 0.92 Course Co2 0.92 0.92 0.92 Co5 0.92 0.92 0.92 0.92 Co6 0.92 0.92 0.92 0.92 Co6 0.92 0.92 0.92 0.92 Co1 0.68 0.68 0.68 0.68 Co1 0.68 0.68 0.68 0.68 Co4 0.68 0.68 0.68 0.68 Co5 0.68 0.68 0.68 0.68 Co6 0.68 0.68 0.68 0.68 Co1 NA NA NA NA NA Outcomes Co2 NA NA <t< td=""><td></td></t<>	
CO4	
Co6	
Course Outcomes	0.89
Course Outcomes CO2 0.92 0.92 0.92 CO4 0.92 0.92 0.92 0.92 CO5 0.92 0.92 0.92 0.92 CO6 0.92 0.92 0.92 0.92 CO1 0.68 0.68 0.68 0.68 CO2 0.68 0.68 0.68 0.68 CO3 0.68 0.68 0.68 0.68 CO4 0.68 0.68 0.68 0.68 CO5 0.68 0.68 0.68 0.68 CO6 0.68 0.68 0.68 0.68 CO1 NA NA NA NA NA CO2 NA NA NA NA NA CO3 NA NA NA NA NA CO4 NA NA NA NA NA CO5 NA NA NA NA NA CO6 NA	0.89
Outcomes CO3 0.92 0.92 CO4 0.92 0.92 0.92 CO5 0.92 0.92 0.92 CO6 0.92 0.92 0.92 CO1 0.68 0.68 0.68 CO2 0.68 0.68 0.68 CO4 0.68 0.68 0.68 CO5 0.68 0.68 0.68 CO6 0.68 0.68 0.68 CO1 NA NA NA NA Outcomes CO2 NA NA NA NA CO4 NA NA NA NA NA Outcomes CO3 NA NA NA NA NA CO4 NA NA NA NA NA NA Outcomes CO3 NA NA NA NA NA NA CO4 NA NA NA NA NA NA NA <td>0.92</td>	0.92
Outcomes CO3 0.92 0.92 0.92 CO4 0.92 0.92 0.92 0.92 CO5 0.92 0.92 0.92 0.92 CO6 0.92 0.92 0.92 0.92 CO1 0.68 0.68 0.68 0.68 CO4 0.68 0.68 0.68 0.68 CO5 0.68 0.68 0.68 0.68 CO6 0.68 0.68 0.68 0.68 CO1 NA NA NA NA NA Outcomes CO2 NA NA NA NA NA Outcomes CO3 NA	
CO4	
COG	
CO1	0.92
CO1	0.92
Course Outcomes CO2 0.68 CO4 0.68 CO5 0.68 0.68 0.68 CO6 0.68 0.68 0.68 CO1 NA NA NA NA COurse CO2 NA NA NA NA CO4 NA NA NA NA NA CO4 NA NA NA NA NA CO4 NA NA NA NA NA CO5 NA NA NA NA NA CO6 NA NA NA NA NA CO6 NA NA NA NA NA Outcomes CO2 NA NA NA NA NA CO4 NA NA NA NA NA NA NA CO5 NA NA NA NA NA NA	0.68
Outcomes CO3 0.68 0.69	0.68
CO4	0.68
COG	0.68
COURSE CO2	0.68
Course Outcomes CO2 NA	0.68
Outcomes CO3 NA	
Outcomes CO3 NA NA NA NA NA CO4 NA NA NA NA NA NA CO5 NA NA NA NA NA NA CO6 NA NA NA NA NA NA CO1 NA NA NA NA NA NA CO3 NA NA NA NA NA NA CO4 NA NA NA NA NA NA CO5 NA NA NA NA NA NA CO1 0.9 0.9 0.9 0.9 0.9 CO2 0.9 0.9 0.9 0.9 0.9 CO3 0.9 0.9 0.9 0.9 0.9 0.9 CO4 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9	
CO4 NA NA NA NA NA NA CO5 NA NA NA NA NA NA CO6 NA NA NA NA NA NA CO1 NA NA NA NA NA NA CO2 NA NA NA NA NA NA CO3 NA NA NA NA NA NA CO4 NA NA NA NA NA NA CO5 NA NA NA NA NA NA CO6 NA NA NA NA NA NA CO6 NA NA NA NA NA NA CO1 0.9 0.9 0.9 CO1 0.9 0.9 0.9 CO2 0.9 0.9 0.9 CO4 0.9 0.9 0.9 CO4 0.9 0.9 0.9 CO5 0.9 0.9 0.9 CO5 0.9 0.9 0.9 CO6 0.9 0.9 0.9 CO7 0.9 0.9 0.9 CO8 0.9 0.9 0.9 CO8 0.9 0.9 0.9 CO9 0.9 0.9 0.	
CO6	
Course Outcomes Outco	
Course Outcomes CO2 NA NA NA NA CO3 NA NA NA NA NA CO4 NA NA NA NA NA CO5 NA NA NA NA NA CO6 NA NA NA NA NA CO1 0.9 0.9 0.9 0.9 CO2 0.9 0.9 0.9 0.9 CO3 0.9 0.9 0.9 0.9 CO4 0.9 0.9 0.9 0.9 CO5 0.9 0.9 0.9 0.9 CO6 0.9 0.9 0.9 0.9 CO1 NA NA NA NA NA	
Outcomes CO3 NA NA NA NA CO4 NA NA NA NA NA CO5 NA NA NA NA NA CO6 NA NA NA NA NA CO1 0.9 0.9 0.9 0.9 CO2 0.9 0.9 0.9 0.9 CO4 0.9 0.9 0.9 0.9 CO5 0.9 0.9 0.9 0.9 CO6 0.9 0.9 0.9 0.9 CO1 NA NA NA NA NA NA NA NA NA	
Outcomes CO3 NA NA NA NA NA CO4 NA	
Cos NA NA NA NA NA NA CO6 NA NA NA NA NA CO1 0.9 0.9 0.9 Course Outcomes CO2 0.9 0.9 0.9 CO3 0.9 0.9 CO4 0.9 0.9 CO5 0.9 0.9 CO5 0.9 0.9 0.9 CO6 0.9 0.9 0.9 CO6 0.9 0.9 0.9 CO6 0.9 NA NA NA NA NA COurse CO2 NA NA NA NA NA NA	
Course CO2 0.9 0.9 0.9 0.9 CO4 0.9 0.9 CO5 0.9 0.9 CO5 0.9 0.9 CO6 0.9 0.9 0.9 CO6 0.9 0.9 CO6 0.9 0.9 CO6 0.9 0.9 CO1 NA	
Course Outcomes	
Course Outcomes CO2 0.9 0.9 0.9 CO3 0.9 0.9 0.9 CO4 0.9 0.9 0.9 CO5 0.9 0.9 0.9 CO6 0.9 0.9 0.9 CO1 NA NA NA NA NA NA NA NA NA	
Outcomes CO3 0.9 0.9 CO4 0.9 0.9 0.9 CO5 0.9 0.9 0.9 CO6 0.9 0.9 0.9 CO1 NA NA NA NA Course CO2 NA NA NA NA	0.9
Outcomes CO3 0.9 0.	0.9
CO4 0.9 0.9 0.9 0.9 CO5 0.9 0.9 CO6 0.9 0.9 CO1 NA	
CO6 0.9 0.9 0.9 0.9 CO1 NA	
CO1 NA NA NA NA Course CO2 NA NA NA NA	0.9
Course CO2 NA NA NA NA	0.9
Course	
CO4 NA NA NA NA	
CO5 NA NA NA NA	
CO6 NA NA NA NA	
CO1 0.87 0.87 0.87	0.87

Course	CO2	0.87	0.87	0.87	0.87
Outcomes	CO3	0.87			0.87
Outcomes	CO4	0.87	0.87	0.87	0.87
	CO5	0.87			
	CO6	0.87	0.87	0.87	0.87
	CO1	0.86		0.86	
Course	CO2	0.86		0.86	0.86
Outcomes	CO3	0.86	0.86	0.86	
Outcomes	CO4	0.86	0.86		0.86
	CO5	0.86	0.86		0.86
	CO6	0.86	0.86		0.86
	CO1	0.83	0.83	0.83	0.83
Course	CO2	0.83	0.83		
Outcomes	CO3	0.83			
	CO4	0.83	0.83	0.83	0.83
	CO5	0.83	0.83	0.83	
	CO6	0.83	0.83	0.83	
	CO1	0.92	0.92	0.92	0.92
Course	CO2	0.92	0.92		
Outcomes	соз	0.92			
	CO4	0.92	0.92	0.92	0.92
	CO5	0.92	0.92	0.92	
	CO6	0.92	0.92	0.92	
	CO1	NA	NA	NA	NA
Course	CO2	NA	NA	NA	NA
Outcomes	CO3	NA	NA	NA	NA
	CO4	NA	NA	NA	NA
	CO5	NA	NA	NA	NA
	CO6	NA	NA	NA	NA
	CO1	NA	NA	NA	NA
Course	CO2	NA	NA	NA	NA
Outcomes	CO3	NA	NA	NA	NA
	CO4	NA	NA	NA	NA
	CO5	NA	NA	NA	NA
	CO6	NA	NA	NA	NA
	CO1	0.82		0.82	
Course	CO2	0.82	0.82	0.82	
Outcomes	CO3	0.82		0.82	
	CO4	0.82		0.82	
	CO5	0.82		0.82	
	CO6	0.82		0.82	
	CO1	0.84		0.84	0.84
Course	CO2	0.84		0.84	0.84
Outcomes	CO3	0.84			
	CO4	0.84			
	CO5	0.84		0.84	
	CO6	0.84	0.84	0.84	0.84

	CO1	NA	NA	NA	NA
Course	CO2	NA	NA	NA	NA
Outcomes	CO3	NA	NA	NA	NA
	CO4	NA	NA	NA	NA
	CO5	NA	NA	NA	NA
	CO6	NA	NA	NA	NA
	CO1	NA	NA	NA	NA
Course	CO2	NA	NA	NA	NA
Outcomes	CO3	NA	NA	NA	NA
	CO4	NA	NA	NA	NA
	CO5	NA	NA	NA	NA
	CO6	NA	NA	NA	NA
	CO1	NA	NA	NA	NA
Course	CO2	NA	NA	NA	NA
Outcomes	CO3	NA	NA	NA	NA
	CO4	NA	NA	NA	NA
	CO5	NA	NA	NA	NA
	CO6	NA	NA	NA	NA
	CO1	NA	NA	NA	NA
Course	CO2		NA	NA	NA
Outcomes	CO3	NA	NA	NA	NA
	CO4	NA	NA	NA	NA
	CO5	NA	NA	NA	NA
	CO6	NA	NA	NA	NA
-	CO1	0.82	0.82		
Course	CO2	0.82	0.82	0.82	
Outcomes	соз	0.82	0.82	0.82	
	CO4	0.82	0.82	0.82	
	CO5	0.82	0.82	0.82	0.82
	CO6	0.82	0.82	0.82	0.82
	CO1	0.86			
Course	CO2	0.86	0.86		
Outcomes	CO3	0.86	0.86		
	CO4	0.86	0.86		
	CO5	0.86	0.86		
	CO6	0.86	0.86		
	CO1	0.91	0.91	0.91	0.91
Course	CO2	0.91	0.91	0.91	0.91
Outcomes	CO3	0.91	0.91	0.91	0.91
	CO4	0.91	0.91	0.91	0.91
	CO5	0.91	0.91	0.91	6.04
	CO6	0.91	0.91	0.91	0.91
	CO1	0.92	0.92	0.92	0.92
Course	CO2	0.92	0.92	0.92	0.92
Outcomes	CO3	0.92	0.92	0.92	0.92
	CO4	0.92	0.92	0.92	0.92
	CO5	0.92	0.92	0.92	0.92

	CO6	0.92	0.92	0.92	0.92
	CO1	0.86	0.86		
Course	CO2	0.86	0.86		
Outcomes	CO3	0.86	0.86		
	CO4	0.86	0.86		
	CO5	0.86	0.86		
	CO6	0.86	0.86		
	CO1	0.87	0.87	0.87	0.87
Course	CO2	0.87	0.87	0.87	0.87
Outcomes	CO3	0.87	0.87	0.87	0.87
	CO4	0.87	0.87	0.87	0.87
	CO5	0.87	0.87	0.87	0.87
	CO6	0.87	0.87	0.87	0.87
	CO1	0.85	0.85		
Course	CO2	0.85	0.85		0.85
Outcomes	CO3	0.85	0.85		
	CO4	0.85	0.85		0.85
	CO5	0.85	0.85		0.85
	CO6	0.85	0.85		0.85
	CO1	0.94	0.94	0.94	0.94
Course	CO2	0.94	0.94	0.94	0.94
Outcomes	CO3	0.94	0.94	0.94	0.94
	CO4	0.94	0.94	0.94	0.94
	CO5	0.94	0.94	0.94	0.94
	CO6	0.94	0.94	0.94	0.94
	AVERAGE	0.818013937	0.822268908	0.819392265	0.81755814
	PERCENTAGE (%)	81	82	81	81

Apply the knowledge of mathematics, science, nentals, and an engineering specialisation for the solution of complex engineering problem

ng first principles of mathematics, natural sciences, and engineering sciences.

gn system components or processes that meet the specified needs with appropriate considerations.

ling design of experiments, analysis and ide valid conclusions.

and modern engineering and IT tools, including prediction and modelling to complex engin

ess societal, health, safety, legal, and cultural issues and the consequent responsibilities

ons in societal and environmental contexts, and demonstrate the knowledge of, and need for

d responsibilities and norms of the engineering practice.

der in diverse teams, and in multidisciplinary settings.

th the engineering community and with the society at large, such as, being able to comprive presentations, and give and receive clear instructions.

ing and management principles and apply these to one's own work, as a member and lead

 γ to engage in independent and life-long learning in the broadest context of technological ϵ

l olve real

lated to urces, high

ory ves,

on and of
ngineering
ng a
e of the Subject: ELECTRIC CIRCUIT THEORY Subject Code: : PC-EE 301 Year: 2nd (New Syllabus)
of networks.
me of the Subject: ANALOG ELECTRONICS Subject Code: PC-EE 302 Year: 2nd (New Syllabus)
regulators and analog electronic circuits.
ed on application.
the Subject: ELECTRO MAGNETIC FIELD THEORY Subject Code: PC-EE 303 Year: 2nd (New Syllabus)
netic problems.
e of the Subject: ENGINEERING MECHANICS
Subject Code: ES-ME 301 Year: 2nd (New Syllabus)
nematics and kinetics of rigid bodies.
n and friction.

riction and rigid bodies.
Vame of the Subject: MATHEMATICS-III
Subject Code: BS- M 301
Year: 2nd (New Syllabus)
Z transform
sis and Z transform
e of the Subject: BIOLOGY FOR ENGINEERS
Subject Code: BS-EE- 301
Year: 2nd (New Syllabus)
ries.
of cancer.
transfer
me of the Subject: INDIAN CONSTITUTION
Subject Code: : MC-EE 301
Year: 2nd (New Syllabus)
f Union, state and local self-government.Structure, jurisdiction and function of Indian
Ty.
f the Subject: Electric circuit theory Laboratory
Subject Code: PC-EE391
Year: 2nd (New Syllabus)
on successful completion of the course, student will have:
ponse of filters, Laplace transform and inverse Laplace transform
of the Subject: : Analog Electronic laboratory
Subject Code: PC-EE392
Year: 2nd (New Syllabus)
on successful completion of the course, student will have:
fter completion of this course, the learners will be able to
er (A)characteristics of BJT and FET,(B)characteristics of Zener diode as voltage regula
ge regulator using regulator IC chip.timer circuit using 555 for monostable, astable an

nentioned outcomes are not limited. Institute may redefine outcomes based their progr of the Subject: : Numerical Methods laboratory **Subject Code:** PC-CS 391 **Year:** 2nd (New Syllabus) n ear equations using al solution of Algebraic Equation by Regularfalsi and Newton Raphson methods. me of the Subject: : ELECTRIC MACHINE-I **Subject Code:** PC-EE-401 **Year:** 2nd (New Syllabus) on successful completion of the course, student will have: chines and transformers ransformers ne of the Subject: : DIGITAL ELECTRONICS **Subject Code:** PC-EE-402 Year: 2nd (New Syllabus) on successful completion of the course, student will have: niconductor memories and programmable logic devices. circuits, A/D and D/A converter onal & sequential digital circuits and A/D and D/A converter. **ubject:** : ELECTRICAL & ELECTRONICS MEASUREMENTS **Subject Code:** PC-EE-403 **Year:** 2nd (New Syllabus) on successful completion of the course, student will have: ors in measurement, loading effect resistance, capacitance and inductance by bridges and potentiometer er, digital multimeter, digital voltmeter, digital frequency meter, signal generator, stra and measurement techniques of voltage, current, frequency and phase by oscilloscope ner, measurement of power, energy, resistance, inductance and capacitance and transducers f the Subject: : THERMAL POWER ENGINEERING Subject Code: ES-EE-401 **Year:** 2nd (New Syllabus)

pines
engines and Gas turbines.
≥S.
he Subject: : VALUES AND ETHICS IN PROFESSION
Subject Code: HM-EE-401
Year: 2nd (New Syllabus)
ibility and duties
ethics and social experimentation
s safety and risk
of the Subject: : ENVIRONMEMTAL SCIENCE
Subject Code: MC-EE-401
Year: 2nd (New Syllabus)
tivities
environmental and health risk
he environmental laws and regulations
ind pollution.
the Subject: : ELECTRIC MACHINE-I LABORATORY
Subject Code: PC-EE491
Year: 2nd (New Syllabus)
ol of DC motor and parallel operation of the transformer
he Subject: : DIGITAL ELECTRONICS LABORATORY
Subject Code: PC-EE492
Year: 2nd (New Syllabus)
propriate instruments and precaution
and flip-flops and asynchronous and synchronous up down counters
ice versa, 4 bit parity generator & comparator circuits,
t:: ELECTRICAL & ELECTRONICS MEASUREMENT LABORATORY
Subject Code: PC-EE493
Year: 2nd (New Syllabus)

oving iron and dynamometer type ammeter, voltmeter and wattmeter by potentiomet :e, inductance, capacitance
te, inductance, capacitance
,
Sala at a THERMAL DOWER ENGINEEING LARORATORY
Subject: : THERMAL POWER ENGINEEING LABORATORY
Subject Code: ES-ME-491
Year: 2nd (New Syllabus)
ecautions
ochran Boiler, Vertical Tubular Boiler, Locomotive Boiler, 4S Diesel Engine, 4S Petrol Er
ctrical load box and rope brake dynamometer
the Subject: ELECTRIC MACHINE-II PC-EE-501
Subject Code: PC-EE-501
Year: 3rd
agnetic fields.
nase Induction machines
hase Induction machines
nous machine
electromechanical devices.
special eletromechanical device.
Name of the Subject: POWER SYSTEM-I
Subject Code: : PC-EE-502
Year: 3rd (Old Syllabus)
nt sources
1 cables.
n line
lame of the Subject: CONTROL SYSTEM
Subject Code: PC-EE-503
Year: 3rd
ms
me of the Subject: POWER ELECTRONICS

Subject Code: PC-EE-504 Year: 3rd ices. 1 of SCR reduction of harmonics of the converter the Subject: ELECTRIC MACHINE-IILABORATORY **Subject Code:** : PC-EE 591 Year: 3rd hase Inductionmotor, Induction generator and synchronous motor, methods of speed of the Subject: POWER SYSTEM-I LABORATORY **Subject Code:** PC-EE 592 Year: 3rd own strength of solidinsulating material and dielectric constant of transformer oil. of the Subject: CONTROL SYSTEMLABORATORY **Subject Code:** PC-EE 593 Year: 3rd ICE for simulation of systems. the Subject: POWER ELECTRONICSLABORATORY **Subject Code:** PC-EE 594 **Year:** 3rd

of the Subject: DATA STRUCTURE & ALGORITHM

Subject Code: OE-EE-501A Year: 3rd nce the performance of the program. lem. 3, searching, and hashing ns. the Subject: OBJECT ORIENTED PROGRAMMING **Subject Code:** OE-EE-501B norphism, lame of the Subject: POWER SYSTEM-II **Subject Code:** PC-EE-601 Year: 3rd studies. nents. bilty and protection ofpower system. e Subject: MICROPROCESSOR & MICROCONTROLLER **Subject Code:** PC-EE-602 e of the Subject: DIGITAL CONTROL SYSTEM **Subject Code: PE-EE-601A Year:** 3rd tems.

cations.

me of the Subject: HVDC TRANSMISSION
Subject Code: PE-EE-601B
Year: 3 rd
fter completion of this course the students will be able to
pplication(s).
iverters.
des.
eactive power control.nts.
of the Subject: ELECTRICAL MACHINE DESIGN
Subject Code: PE-EE-601C
Year: 3 rd
ign of an ac machine
nagnetic and thermalloading of electrical machines
nachines.
the Subject: ELECTRICAL AND HYBRID VEHICLE
Subject Code: PE-EE-602A
Year: 3 rd
lepending on resources.
vehicles.
a of the Subject, DOMED OUALITYANDEACTS
e of the Subject: POWER QUALITYANDFACTS Subject Code: PE-EE-602B
Year: 3 rd
icteristics.
icteristics.
explain working principle of dynamic voltage restorer and UPQC
explain working principle of dynamic voltage restorer and of Qe
-
strial consumers.
ctrical systems.
ectrical systems.
power factor correction.
F

in the frequencydomain.
o SNR
ceivers
ommunication system nication link
THECKIOTI HITK
gital modulation systems
ıtion
eduling, legal andregulatory issues applied to economic investment and project-manage
earth fault relay, on loadtime delay relay, off load time delay relay, CT and PT.
der. 6. Apply software tools to find bus voltage, currents and power flows throughout t

a number in a string andstring manipulation
ns of 8051
sor and signal conditioning circuits
n system for small township, double circuit transmission line and Electric machines with lift and pump and for an applicationwith analog, digital, mixed signal, microcontroller and PCB
rmance.
te space.
ration and pollution. tems stems
ergy intensive industrialequipments
ition.

mes minimum for a definedlevel of load.
d phase angles at all buses. mand at all the times.
mana at an the times.
nd transform the real lifeinformation in different representation
id transform the real memormation in different representation
nine learning
and limitations, and societalimplications
erent contexts
he key technologies andprotocols employed at each layer of the stack
ata analysis
ılgorithm, areafilling algorithms.
acteristics and attributesof Embedded Systems
bedded systems.
ms. 6. design RTOS based Embedded systems.
. 2. enhance images in the spatial and frequency domain using various transforms.

rces in the organizationsand integrate the learning in handling these complexities. gement.
3. 2. explain the fundamental of Electrolytic processes, Electric heating and Welding. specific applications.
of traction motor.

erent components and stability.
on and Synchronous motor.
1 and SRM.
onous motor.
ontrol valves.
machines
particular problem
oft computing approach
roblem.
1S.
e and respiration rate.
ging equipments Surgical & Therapeutic Instruments and Medical Laboratory Instruments
nent methods.
ient methods.
techniques.

3 and procedures for measurement of physical parameters

. 6. apply smart sensors, bio-sensors, PLC and Internet of Things to different applicati

PO5	P06	PO7	PO8	PO9	PO10
-					
0.67					
-					

•	Ī		i .	i
0.70				
0.78				
0.78				
	0.75			
		0.75		
		0.75		
		0.75		
	0.92	0.92		
	0.92	0.92		
	0.52	0.52		
0.9				
0.84				
0.84				
	0.76			
	-			

		1			
0.72	0.72			0.72	
	0.72			0.72	
	0.12			0.72	
	0.72				
0.72					
0.72					
0.71				0.71	
V.71				0.71	
				0.71	
0.71					
0.71	0.00			0.00	
0.88				0.88	
	0.88			0.88	
	0.88				
	0.88				
0.88					
0.88					
0.95				0.95	
	0.95			0.95	
	0.95				
	0.95				
0.95					
0.95					
0.76					
	0.76				
	0.76				
0.76					
0.76					
0.92					
	0.92				
	0.92				
	0.92				
0.92					
0.92					
0.91	0.91				
0.91					
0.91					
0.87	0.87				
	0.87				
	0.87				
	0.87				

0.87				
0.87				
		0.67		
	0.67			
	0.67			
0.67	0.67	0.67	0.67	
0.67			0.67	
		0.84		
-		0.84	0.84	
-			0.84	
		0.71		
	0.71	5.71		
	0.71			
	0.71	0.71	0.71	
	0.71	0.71	0.71	
			0.71	
		0.02		
	0.00	0.92		
	0.92			
	0.92	2.00		
	0.92	0.92	0.92	
			0.92	
		0.63		
		0.63	0.63	
			0.63	
		0.87		
		0.87	0.87	
			0.87	
		0.68		
		0.68	0.68	
			0.68	
		0.83		

		0.83		0.83	
				0.83	
NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA
			0.83		
				0.83	
				0.83	
			0.83	0.83	0.83
				0.83	0.83
			0.71		
			0.71		0.71
					0.71
			0.68		
			0.68		0.68
					0.68
NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA
	NA				NA
NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA
		0.73			
		0.73			
		0.73	0.73		0.73
					0.73
		0.89			
		0.89			
		0.89	0.89		0.89
					0.89
		0.65	0.65		

		0.65			
0.65					
0.65		0.65	0.65		0.65
0.65					0.65
		0.89	0.89		
		0.89			
0.89					
0.89		0.89	0.89		0.89
0.89					0.89
0.92					
0.92		0.92			
		0.92			
0.92		0.92	0.92		0.92
0.92					0.92
	0.68	0.68			
	0.68	0.68			
	0.68	0.68		0.68	
				0.68	
NA	NA	NA	NA		NA
	NA	NA	NA		NA
	NA	NA	NA		NA
	NA	NA	NA		NA
NA	NA	NA	NA	NA	NA
	NA	NA	NA		NA
	NA	NA	NA		NA
	NA	NA	NA		NA
	NA				NA
	NA		NA		NA
	NA	NA	NA		NA
	NA	NA	NA		NA
	0.9	0.9			
	0.9				
		0.9			
		0.9			
		0.0			
NA	NA	NA	NA	NA	NA
	NA	NA	NA NA	NA NA	NA
	NA		NA NA		NA
	NA NA	NA NA			NA NA
	NA NA	NA NA	NA NA		NA NA
	NA NA	NA NA	NA NA	NA NA	NA NA
IVA	IVA	IVA	IVA	IVA	IVA

	0.87	0.87	0.87		
	0.87		0.87		
	0.87		0.87		
	0.86				
	0.86				
	0.86				
	0.86				
	0.86				
0.83					
0.83					
0.83					
0.83	0.83				
	0.83				
0.83					
0.92					
0.92					
0.92					
0.92	0.92				
	0.92				
0.92					
NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA
0.82		0.82	0.82		
0.82		0.82	0.82		
	0.82	0.82	0.82		
	0.82				
0.82	0.82				
0.82		0.82	0.82		
0.84	0.84				
		0.84			
0.84					
0.84	0.84				
		0.84			
0.84	0.84	0.84			

NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA
	0.82				0.82
	0.82				0.82
		0.8	2		
		0.8			
		0.0.			
	_				
	_				0.86
	_				0.00
	_				
	_				
	0.91				
	0.51				0.91
				0.91	
		0.04		0.91	
		0.91	0.04		
			0.91		
	0.00				
	0.92				
					0.92
				0.92	
		0.92			
			0.92		

				0.86	
					0.86
			0.86		0.86
					0.86
_					0.87
					0.85
					0.85
					0.94
0.94					
	0.94				
				0.94	
		0.94			
0.812272727	0.796060606	0.8136	0.805090909	0.840923077	0.838873239
81	79	81	80	84	83

deration for

neering

relevant to

or sustainable

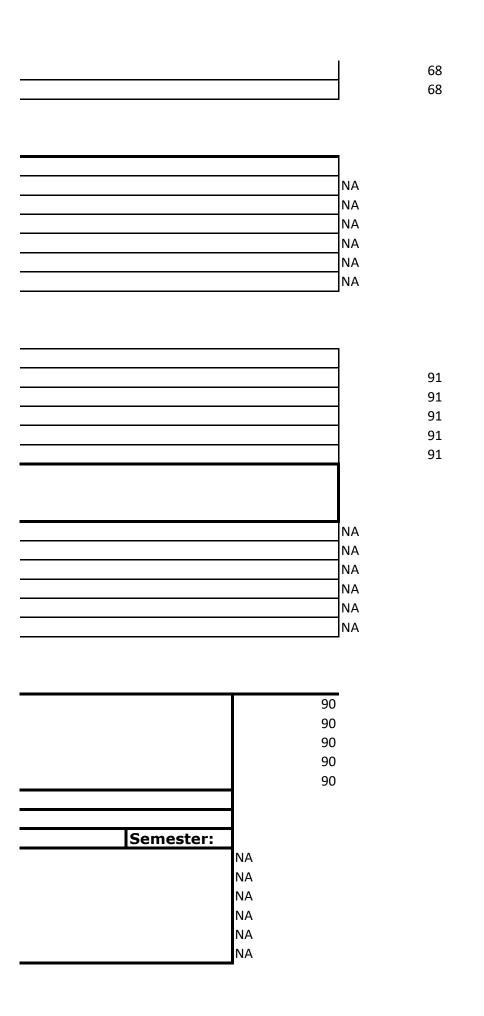
ehend and

der in a team,

change.

67
67
67
67
67
67
 66
66
66
66
 66
66
 7.4
 74
74
74
74
74
74
i
77
77
77

	77
	77
	, ,
	78
	78
-	78
	78
	78
	_
	75
	75
	75
	75
	75
	75
	75
	75
Judiciary,Basics of PIL and guideline for	92
Judicial Y/Dubics of 112 and galacimic for	92
	92
-	
	90
	90
	90
	90
	90
	90
	89
	89
tor (C) characteristics of class A C and	
tor, (C) characteristics of class A, C and	89
	89
d multistable, multivibrator. V to I and I	89
·	•


	89
ram educational objective.	89
	_
	84
	84
	84
	84
	84
	84
	84
	87
	87
	87
	87
	87
	87
	76
	76
	76
	76
	76
	76
	76
	72
	72
in gauge, LVDT and temperature	72
	72
	72
	72
	7
	7
	\dashv
	71

	71
	71
	71
	71
	71
	71
	88
	88
	88
	88
	88
	88
	95
	95
	95
	95
-	95
	33
	76
	76
	76
	76
	76
	76
	92
	92
	92
	92
	92
	92
<u></u> .	
	04
	91
	91 91

	91
	91
or	91
er	91
	91
	91
	87
	87
ngine, 2S Petrol engine	87
igilie, 25 recibi eligilie	87
	87 87
	87 87
	67
	67
	67
	67
	67
	67
	67
	67
	07
	71
	71
	71
	71
	71
	71
	71
	, -
	63
	63
	63
	63
	63
	63
l	

	1
	68
	68
-	68
	68
	68
	68
	58
-	1
	84
	84
	84
	84
control of Inductionmotors and parallel	84
·	84
	92
	92
-	
	92
	92
	92
	92
	92
-]
	87
	87
-	87
	87
	87 87
	67
	Į
	83
	83
	83

	71
	71
	71
	71
	71
	71
5th sem	
Jui seiii	
	68
	68
	68
	68
	68
	68
	73
	73
	73
	73
	73
	73
	73
	65
	65
	65
-	
	65
	65
	68
	68
	68
	68
	00

Semester:	
	NA
Semester:	
Semesteri	87
	87
	87
	87
	87
	87
Samastan	
Semester:	NA
Semester:	
	86
	86 86
	86
	86
gement problems	86
Semester:	
	89
	89 89
	89 89
:he electrical system.	89
5,555	89
Semester:	
	89

		89 89 89 89
		89
Semester:		
		92
		92 92
		92
		92
		92
Semester:		
		83 83
		83
		83
		83
		83
Semester: 7 th	NIA	
	NA NA	
	NA	
	NA	
	NA NA	
Cama t		
Semester:	NA	
	NA	
	NA	
	NA NA	
	NA	
Semester:		
 semester:		82
	•	

	82
	82
	82
	82
	82
Semester:	
	84
	84
	84
	84
	84
Semester:	
	NA
	IVA
Samastan	
Semester:	NI A
	NA
Semester:	
	NA
Semester:	
-	NA

Semester:		
	82	
	82	
	82	
	82 82	
	82	
	02	
Semester:		
	86	
	86 86	
	86	
	86	
	86	
Semester:	92	
	92	
	92	
	92	
	92	
	92	
Semester:		
	86)
	86)
	86	
	86	1
Semester:		
	NA	
	NA NA	
Semester:		
	87	
	87	
	87	

	┪
]
Semester:	-
	NA NA
	NA
	NA
	NA
	NA
	┪
Semester:]
	NA
	NA NA
	NA NA
	NA
]
Competent	4
Semester:	NA
	NA
	NA
	NA NA
	INA
Semester:	_
ntc	NA NA
nts.	NA NA
	NA
	NA
	-
Semester:	┨
23651011	NA
	NA
	NA NA
	NA NA
	NA
]

	Semester:
ons.	
PO11	PO12

-	
0.71	
0.71	
0.71	
0.88	
0.88	
0.88	
0.88	
0.95	
0.95	
0.95	
0.95	
-	
-	

0.68
 0.68
0.68
0.68
0.83
 0.83

	0.8	3
NA	NA	
NA NA	NA NA	
NA .	NA	
		_
		_
		_
	_	-
		_
		_
N/A	N.A.	
NA NA	NA NA	
NA NA	NA NA	
NA NA	NA NA	
NA NA	NA NA	
NA NA	NA NA	
	NA .	_
	0.73	3
	0.73	
	0.73	
		-
		_
		_
		_
		_

	-
NA	NA
	NA
NA	NA
-	
NA	NA
-	

	•
0.86	
0.86	
0.86	0.86
	0.86
	0.86
0.86	0.86
0.83	
0.83	
0.83	
0.92	
0.92	
0.92	
NA	NA
0.82	
0.82	
0.82	
0.82	

NA	NA
NA	NA
NA NA	NA NA
NA NA	NA NA
NA NA	NA NA
NA.	NA .
0.86	
	0.86
0.86	
	0.86
0.91	
	0.91
0.92	

	0.92
	0.87
0.94	
	0.94
0.863666667	0.816842105
86	81

ECE PO Attainment 2021 Odd and 2022 Even Semester PO OF ECE DEPARTMENT

PO-1: Engineering Knowledge:

Our graduates would apply knowledge of mathematics and fundamental engineering sciences appropriate to electronics and communication engineering to solve problem of electronics and communication engineering and related fields.

PO-2: Problem Analysis:

Our graduates would demonstrate **ability to identify formulate, research literature and analyze complex problems** of electronics and communication engineering and related areas reaching substantiated conclusions using first principle of engineering sciences.

PO-3: Design/development of solutions:

Our graduates would have **ability to design solution for complex** electronics and communication engineering problems and design system components and processes that meet the specified needs with appropriate consideration for public health and safety.

PO-4: Conduct investigations of complex problems:

Our graduates would depict ability to use research based knowledge and research methods including design of experiments analysis and interpretation of data and synthesis of information related to electronics and communication engineering and related areas to provide valid conclusions.

PO-5: Modern tool usage:

Our graduates would depict ability to create, select and apply appropriate techniques and resources and modern engineering and IT tools including prediction and modelling tool to complex electronics and communication engineering activities with an understanding of the limitations.

PO-6: The engineer and society:

Our graduates would have ability **to apply reasoning informed by contextual** knowledge to assess societal, health, safety, legal and cultural issues and consequent responsibilities relevant to professional engineering practice of electronics and communication engineering.

PO-7: Environment and sustainability:

Our graduates would have ability to understand the impact of professional engineering solutions in societal and environmental context relevant to electronics and demonstrate the knowledge of and need for sustainable development relevant to electronics and communication engineering.

PO-8: Ethics:

Our graduates would show ability **to apply ethical principles and commit** professional ethics and responsibilities and norms of engineering practices relevant to electronics and communication engineering.

PO-9: Individual and team work:

Our graduates would demonstrate **ability to function effectively** as an individual **and leader in diverse teams in multidisciplinary settings** related to electronics and communication engineering.

PO-10: Communication:

Our graduates would depict ability to communicate effectively on complex electronics and communication engineering and related activities with engineering committee and with society at large such as being able to comprehend and write effective reports and design documentation, make effective presentation and give and receive clear instructions.

PO-11: Project management and finance:

Our graduates would depict **knowledge and understanding of engineering** and management principles relevant to electronics and communication engineering and apply these to once own work as a member and leader in a team to manage projects and in multidisciplinary environments.

PO-12: Life-long learning:

Our graduates would depict **ability to recognize** the need for and have the preparation to engage in lifelong learning in the broadest context of technological change in the field of electronics and communication engineering and related areas.

Paper Name	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	P11	P12
•	CO1		V										
EC301	CO2			V	V								
	CO3		V										
EC302	CO1		٧										
	CO2		٧			V	V						
	CO3		V										
EC303	CO1		V	V	V								
	CO2		V										
	CO3		V										
	CO4		V										
EC304	CO1		٧										
	CO2		٧	V	V								
	CO3		٧										
EC391	CO1		٧			V	V						

_	1				1	1		1	1		1	1	
	CO2		V				V	V					
	CO3				V								
	CO4		V			V	V						
	CO5		V			V	V						
EC392	CO1		V			V	V						
	CO2		V				V	V					
	CO3				V								
	CO4		V			V	V						
	CO5		V			V	V						
Ec401	CO1					V	٧						
	CO2		V										
	CO3		V										
	CO4		V										
EC402	CO1		V										
LC402	CO2		V										
EC403	CO1		V			V	V						
EC405			1		.,	V	_ <u> </u>						
F0C 404	CO2		V		V								
ECS401	CO1		V	1	V				1		1		
	CO2		V		V				-		-		
	CO3		V	1							1	1	
	CO4		V			V	V				1		ļ
	CO5		V	ļ							1	ļ	
BSM401	CO1	V							V				
	CO2	V											
	CO3			V	V								
	CO4	V											
Ec491	CO1		V			V	V						
	CO2		V				V	V					
	CO3				V								
	CO4		V			V	V						
	CO5		V			V	٧						
Ec492	CO1		٧			٧	٧						
	CO2		V				V	V					
	CO3		•		V		<u> </u>	_					
	CO4		V			V	V						
	CO5		V			V	V						
FC402			V			V	V						
EC493	CO1					V		1/	-		1		
	CO2		V				V	V	1		1	1	
	CO3		 	1	V	.	.		-		1		
	CO4		V	1		V	V				1	1	
	CO5		V			V	V				1		
BSMCS491	CO1	V				V	V						
									-		1	ļ	
	CO2	V				V	V						
			-	1		.	.		-		1		
	CO3	V				V	V						
	601	.,	1			.,	.,		1		1	1	
	CO4	V				V	V						
50.504	601	.,	.,	1					-		1		
EC 501	CO1	V	V						-		1		
	CO2		V								1	1	
	CO3		V	1					1		1		
	CO4			1		V	V					1	
	CO5		V	1									
EC502	CO1		V							ļ			
	CO2					V	V						

			1	1				1	1	
	CO3				V	V				
	CO4									
EC503	CO1	V								
	CO2			V	V					
	CO3				V	V				
50504	CO4	.,			V	V				
EC504	CO1	V			V	V				
	CO2	V			V	V				
FFF0F0F4	CO3	V			V	V				
EEEC505A	CO1	V								
50504	CO2	V			\					
EC591	CO1	V			V	V	.,			
	CO2	V		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		V	V			
	CO3			V	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \					
	CO4	<u>V</u>			V	V				
FCF03	CO5	<u>V</u>			V	V				
EC592	CO1	V			V	V	.,			
	CO2	V		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		V	V			
	CO3	V		V	1/	V			+	
	CO4 CO5	V			V	V				
ECE03		V			V	V				
EC593	CO1	V			V	V	V			
	CO2	V		V		V	V			
		V		V	V	V				
	CO4 CO5	V			V	V				
EC601	CO1	V			V	V				
ECOUI	COI	V								
	Co2	V								
	COL	•								
EC602	CO1	V	V	V						
	CO2	V	V	V						
PEEC603D	CO1	V								
PEECOUSD	COI	V								
	CO2	V								
	COL	•								
	CO3	V								
EC691	CO1	٧			V	٧				
	CO2	V				V	٧			
	CO3			V						
	CO4	٧			V	٧				
	CO5	V			V	V				
EC692	CO1	٧			٧	V				
	CO2	٧				٧	٧			
	CO3			V						
	CO4	٧			V	V				
	CO5	٧			V	V				
EC681	CO1	٧			V	V				
	CO2	٧				V	٧			
	CO3			V						
	CO4	٧			٧	V				
	CO5	V			V	V				
EC702	CO1	٧	٧	V						
				ĺ	1	ĺ				

	603												
	CO2		V	V	V								
	CO3		V	V	V								
	CO4		V	V	V								
EC703A	CO1		V										
	CO2		V										
EC781	CO1		V			٧	V						
	CO2		V				V	٧					
	CO3				V								
	CO4		V			V	٧						
	CO5		V			V	٧						
EC782	CO1	V											
	CO2		٧										
	CO3			V									
	CO4				V								
	CO5					V							
	CO6						V						
	CO7							V					
	CO8								V				
	CO9									V			
	CO10										V		
	CO11											V	
	CO12												V
PEEC801B	CO1		V										
	CO2		V										
OEEC804A	CO1		V										
	CO2		V										
	CO3		V										
	CO4		V										
EC881	CO1	V											
	CO2		V										
	CO3			V									
	CO4				V								

CO5					V							
CO6						V						
CO7							V					
CO8								V				
CO9									V			
CO10										V		
CO11											V	
CO12												٧
CO1	V											
CO2		V										
CO3			V									
CO4				V								
CO5					٧							
CO6						V						
CO7							V					
CO8								V				
CO9									V			
CO10										V		
CO11											V	
CO12												V
	CO7 CO8 CO9 CO10 CO11 CO12 CO1 CO2 CO3 CO4 CO5 CO6 CO7 CO8 CO9 CO10 CO11	CO7 CO8 CO9 CO10 CO11 CO12 CO1 V CO2 CO3 CO4 CO5 CO6 CO7 CO8 CO9 CO10 CO11	CO7 CO8 CO9 CO10 CO11 CO12 CO1 V CO2 V CO3 CO4 CO5 CO6 CO7 CO8 CO9 CO10 CO11	CO7	CO7	CO7	CO7 CO8 CO9 CO10 CO11 CO12 CO1 V CO2 V CO3 V CO4 V CO5 V CO6 V CO7 CO8 CO9 CO10 CO11	CO7	CO7	CO7	CO7	CO7

PO Attainment 2021-2022

Paper Code	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	P11	P12
	CO1	0.75											
EC301	CO2		0.75										
	CO3	0.75											
	CO1	0.75											
EC302	CO2	0.75		0.75									
	CO3	0.75											
	CO1	0.78	0.78										
EC303	CO2	0.78											
	CO3	0.78											

	CO4	0.78							
	CO1	0.67							
50204	CO2	0.67	0.67						
EC304									
	CO3	0.67							
ESCS301	CO1	0.75		0.75					
	CO2			0.75					
				0.73					
	CO3	0.75							
BSM301	CO1	.78							
	CO2		0.78						
			0.78						
	CO3			0.78					
	CO1	0.81		0.81					
		0.04			0.01				
	CO2	0.81		0.81	0.81				
EC391	CO3	0.81	0.81						
	CO4	0.81		0.81					
	CO5	0.81		0.81					
	CO1	0.88		0.88					
	CO2	0.88		0.88	0.88				
		0.00		0.00	0.00				
EC392	CO3	0.00	0.88	0.00					
	CO4	0.88		0.88					
	CO5	0.88		0.88					
	CO1			0.81					
	CO2	0.81		0.02					
ESCS391	CO3	0.81							
	CO3	0.81							
	CO4	0.81							
	CO1			0.78					
	CO2	0.78						 	
EC401	CO3	0.78							
	CO4	0.78							
EC402	CO1	0.75							
LC-102	CO2	0.75		0 ==					
	CO1	0.75		0.75					
EC403	CO2	0.75	0.75						

	CO1	0.75	0.75							
	COI	0.75	0.73							
	CO2	0.75	0.75							
ECS401	CO3	0.75								
	CO4	0.75		0.75						
	CO5	0.75								
	CO1	0.74				0.74				
	CO2	0.74								
BSM401	CO3	0.74	0.74							
	CO4	0.74								
	CO1	0.82		0.82						
	CO2	0.82		0.82	0.82					
EC491	CO3		0.82							
	CO4	0.82		0.82						
	CO5	0.82		0.82						
	CO1	0.83		0.83						
	CO2	0.83		0.83	0.83					
EC492	CO3		0.83							
	CO4	0.83		0.83						
	CO5	0.83		0.83						
	CO1	0.93		0.93						
	CO2	0.93		0.93	0.93					
EC493	CO3		0.93							
	CO4	0.93		0.93						
	CO5	0.93		0.93						
	CO1	0.61		0.61						
DCNACC 404	CO2	0.61		0.61						
BSMCS491	CO3	0.61		0.61						
	CO4	0.61		0.61						
	CO1	0.7								
	CO2	0.7								
EC 501	CO3	0.7								
	CO4			0.7						
	CO5	0.7								
-										

	CO1	0.70								
	CO2			0.70						
EC502	CO3			0.70						
	COS			0.70						
	CO4					0.70				
	CO1	0.64								
	CO2		0.64							
EC503	CO3			0.64						
	CO4			0.64						
				0.01						
	CO1	0.68		0.68						
	602	0.60		0.60						
EC504	CO2	0.68		0.68						
	CO3	0.68		0.68						
EEEC505A	CO1	0.68	-							
	CO2 CO1	0.68	-	0.83						
	COI	0.83		0.83						
	CO2	0.83		0.83	0.83					
EC591	CO3	0.00	0.83	0.00						
	CO4	0.83		0.83						
	CO5	0.83		0.83						
	CO1	0.93		0.93						
	CO2	0.93		0.93	0.93					
	002	0.55		0.55	0.55					
EC592	CO3		0.93							
	CO4	0.93		0.93						
	CO5	0.93		0.93						
	COS	0.93		0.95						
	CO1	0.94		0.94						
		201								
	CO2	0.94		0.94	0.94					
EC593	CO3		0.94							
	CO4	0.94		0.94						
	CO5	0.94		0.94						
	CO1	0.64								
EC601										
EC001	Co2	.64								
	CO1	64%	64%							
ECC03	201	UT/0	J-70							
EC602	CO2	64%	64%							
	CO1	0.65								
	CO1	0.65								
PEEC603D	CO2	0.63								

EC604C CO2 0.7		CO3	0.62								
CO3		CO1	0.7			0.7					
CO3	FC604C	CO2	0.7								
EC691		CO3	0.7	0.7	0.7						
EC691		CO4	0.7			0.7					
EC691		CO1			0.90						
CO4		CO2	0.90		0.90	0.90					
CO5 0.90 0.90 0.90 0.90 0.95 0.90 0	EC691	CO3		0.90							
EC692 CO1											
EC692											
EC692											
CO4		CO2	0.95		0.95	0.95					
CO5	EC692			0.95							
EC681											
EC681 CO2 0.90											
EC701B CO3											
CO4 0.90 0			0.90		0.90	0.90					
CO5 0.90 0	EC681		0.00	0.90	0.00						
EC701B		CO4	0.90		0.90						
EC701B CO2 0.73 0.73 0.68 CO3 0.68 0.68 CO1 0.71 0.71 0.71 CO2 0.71 0.71 0.71 CO3 0.71 0.71 0.71 CO4 0.71 0.71 0.74 EC703A CO2 0.74 0.74		CO5	0.90		0.90		0.90	0.90		0.90	
CO3		CO1	0.73	0.73							
EC702C CO1 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.74	EC701B	CO2	0.73	0.73							
EC702C						0.68					
EC702C CO3 0.71 0.71 0.71 CO4 0.71 0.71 0.74 EC703A CO2 0.74 0.74		CO1	0.71	0.71							
CO3 0.71 0.71	EC702C	CO2	0.71	0.71							
CO1 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74		CO3	0.71	0.71							
EC703A CO2 0.74 0.74		CO4	0.71	0.71							
CO2 0.74 0.74	FC702.4	CO1	0.74			0.74					
	EC/U3A	CO2	0.74		0.74						
CO1 0.73		CO1	0.73								
OEEC704A CO2 0.73 0.73	OEEC704A	CO2	0.73	0.73							
CO3 0.73 0.73		CO3	0.73		0.73						

	CO4	0.73		0.73									
	CO5	0.73		0.73									
	CO1	0.90		0.90									
	CO2	0.90		0.90	0.90								
EC781	CO3		0.90										
10781	CO4	0.90		0.90									
	CO5	0.90		0.90			0.90	0.90			0.90		
	CO1	0.92											
	CO2		0.92										
	CO3			0.92									
	CO4				0.92								
	CO5					0.92							
	CO6						0.92						
EC782	CO7							0.92					
	CO8								0.92				
	CO9									0.92			
	CO10										0.92		
	CO11											0.92	
	CO12												0.92
DEE-0004 D	CO1	0.83	0.83										
PEEC801B	CO2	0.83	0.83										
	CO1	0.74											
OEEC802C	CO2	0.74											
	CO3	0.74		0.74									
	CO1		0.75										
OEEC803C	CO2		0.75										
	CO3			0.75									
	CO1	0.95											
	CO2		0.95										
EC881	CO3			0.95									
	CO4				0.95								

	CO5					0.95							
	CO6						0.95						
	CO7							0.95					
	CO8								0.95				
	CO9									0.95			
	CO10										0.95		
	CO11											0.95	
	CO12												0.95
	CO1	0.95											
	CO2		0.95										
	CO3			0.95									
	CO4				0.95								
	CO5					0.95							
	CO6						0.95						
EC882	CO7							0.95					
	CO8								0.95				
	CO9									0.95			
	CO10										0.95		
	CO11											0.95	
	CO12												0.95
Average		0.71	0.72	0.75	0.79	0.80	0.80	0.84	0.78	0.85	0.73	0.85	0.85
PO Attainment		=	=	=	=	=	=	=	=	=	=	=	=
Attaillieilt		71%	72%	75%	79%	80%	80%	84%	78%	85%	73%	85%	85%

CALCUTTA INSTITUTE OF ENGINEERING AND MANAGEMENT DEPARTMENT OF CIVIL ENGINEERING ACADEMIC YEAR 2020-2021 CO PO MAPPING FOR ODD SEMESTER,2019

PROGRAM OUTCOMES

PO-1: Engineering Knowledge:

Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO-2: Problem Analysis:

Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO-3: Design/development of solutions:

Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO-4: Conduct investigations of complex problems:

Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO-5: Modern tool usage:

Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.

PO-6: The engineer and society:

Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO-7: Environment and sustainability:

Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO-8: Ethics:

Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO-9: Individual and team work:

Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO-10: Communication:

Communicate effectively on complex engineering activities with the engineering community and with

society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

PO-11: Project management and finance:

Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO-12: Life-long learning:

Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

CO to **PO** Mapping

PAPER NAME	cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	P11	P12
	CO1		V										
CE(ES)302	CO2			V	V								
CE(HS)302	CO1		V										
CE(ES)392	CO1		V	V	V								
CE(ES)401	CO1		V										
	CO2		V	V	V								
CE(ES)402)	CO1		V			٧	٧						
	CO2		V				٧	٧					
CE(PC)401	CO1		٧			V	٧						
	CO2		V				V	V					
CE(PC)402	CO1					٧	٧						
, ,	CO2		V					V					
CE(PC)403	CO1		V					V					
	CO2		V						V				
CE(PC)404	CO1		V	٧	V	٧	٧			٧	٧		
	CO2		V		V		٧		٧				
CE(HS)401	CO1		V	V	V								

-	CO2		V		V	V						
CE(ES)491	CO1	٧	V	V	1	V		V	V			
0=(=0) 10=	001			-					-			
CE(ES)492	CO1		٧			V	٧					
	CO2		٧	٧			٧	٧				
CE(ES)493	CO1		V			V	٧					
CE(PC)493	CO1		V			V	V					
CE(PC)494	CO1	V	V			V	V	V	V			
CE(PC)501	CO1	V	V		V		V		V	V		
	CO2		V	V	V			V				
CE(PC)502	CO1		V						V			
	CO2					V	V					
CE(PC)503	CO1		V									
	CO2				V	V						
CE(PC)504	CO1		V			V	V					
	CO2		V			V	V					
CE(PC)505	CO1		V	V	V		V					
	CO2		V									
CE(PC)506	CO1		٧			٧	V					
	CO2		٧		V		٧	V				
	CO3				V							
	CO4		V			V	V					
	CO5		V			V	V					
CE(PC)591	CO1		V			V	V					
CE(PC)594	CO1		V			V	V					
CE(PC)595	CO1		V	V								
CE(PC)596	CO1		V	V	V							
CE(PC)597	CO1		V									
CE(PC)601	CO1		V			V	V					
	CO2		V				V	V				
CE(PC)602	CO1		V	1		V	V					
` ´	CO2		V				V	V				

CE(PC)603	CO1		V			V	V						
` ,	CO2		V				V	V					
CE(PC)604	CO1		V	V	V			V	V				
	CO2		V	V	V			V		V	V		
CE(PE)601B	CO1		V		V				V	V			
	CO2		V				V				V		
CE(PE)602A	CO1		V			V	V						
	CO2		V				V	V	V	V			
CE(PC)693	CO1	V	V	V	V	V	V	V	V	V	V	V	V
CE(PC)694	CO1		V										
CE(PC)695	CO1		V										
CE(OE)701A	CO1	V	V	V	V	V	V	V	V	V	V	V	V
	CO2	V	V	V	V	V	V	V	V	V	V	V	V
CE(PE)701C	CO1	V	V	V	V	V	V	V	V	V	V	V	V
	CO2	V	V	V	V	V	V	V	V	V	V	V	V
CE(PE)702A	CO1	V	V	V	V	V	V	V	V	V	V	V	V
	CO2	V	V	V	V	V	V	V	V	V	V	V	V
CE(PE)703A	CO1	V	V	V	V	V	V	V	V	V	V	V	V
	CO2	V	V	V	V	V	V	V	V	V	V	V	V
CE(PE)704C	CO1	V	V	V	V	V	V	V	V	V	V	V	V
	CO2	V	V		V		V			V		V	
CE(PE)705A	CO1	V	V	V		V		V	V	V	V	V	
	CO2	V		V	V	V	V		V	V	V		
CE(IN)791	CO1	V	V	V		V	V			V	V	V	

CE(PROJ)79	CO2	V	V		V	V	V		V	V	V		V
CE(PE)801D	CO1	V	V	V	V	V		V	V	V			
	CO2		V	٧	V	V		V		V	V	V	٧
CE(0E)801C	CO1 DEEP	V	V	V	V	٧		V	V	V	V	V	V
	CO2		V			V		V	V	V	V	V	٧
CE(CV)891	CO1	V	V	V	V	V	V	V	V	V	V	V	V
CE(PROJ)89	CO1	V	V	V	V	V	V	V	V	V	V	V	V

				2021 OI	DD AND	2022	EVEN S	SEMES	TER_C	E			
PAPER NAME	cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO7	PO8	PO9	PO10	P11
CE(ES)3	CO1		0.70										
02	CO2			0.74	0.80	0.70							
CE(HS)3 02	CO1	0.7 2	0.73										
CE(ES)3 92	CO1		0.72	0.69	0.86							0.88	
CE(ES)4	CO1	0.6 8	0.72										
01	CO2		0.72	0.72	0.62								
CE(ES)4	CO1		0.75			0.55	0.65						
02)	CO2	0.6 8	0.55				0.75	0.65					
CE(PC)4	CO1		0.63			0.63	0.53						
01	CO2		0.67				0.73	0.73				0.63	
CE(PC)4	CO1	0.6 5		0.72		0.72	0.76						
02	CO2		0.66					0.79	0.76				
CE(PC)4	CO1		0.68		0.74		0.54						
03	CO2		0.74							0.64			
CE(PC)4	CO1		0.75	0.71	0.61	0.71	0.71		0.88		0.87	0.61	
04	CO2		0.71		0.69		0.68			0.81	0.89		
CE(HS)4	CO1		0.76	0.72	0.70								
01	CO2		0.76		0.66	0.68					0.86		0.71
CE(ES)4 91	CO1	0.6 7	0.74	0.70		0.74		0.74		0.74			
CE(ES)4	CO1		0.75			0.64	0.70		0.86				
92	CO2		0.64	0.74			0.64	0.74					

CE(ES)4 93	CO1		0.73			0.65	0.71		0.85				
CE(PC)4 93	CO1		0.65			0.66	0.62						
CE(PC)4 94	CO1	0.6 3	0.73			0.73	0.73	0.83	0.84	0.53			
CE(PC)5 01	CO1	0.6 5	0.70		0.67		0.75			0.75	0.87		
01	CO2		0.55	0.69	0.70			0.75					
CE(PC)5	CO1		0.74							0.80			
02	CO2			0.69		0.73	0.75		0.88			0.88	
CE(PC)5	CO1		0.66										
03	CO2	0.6 9			0.66	0.74							
CE(PC)5	CO1		0.78			0.71	0.73						
04	CO2		0.78			0.72	0.64						
CE(PC)5	CO1		0.68	0.70	0.68		0.66					0.78	
05	CO2	0.7 0	0.78										
05/00)5	CO1		0.69			0.73	0.72		0.83				
CE(PC)5	CO2		0.71		0.74		0.73	0.83				0.83	
06	CO3				0.73				0.83				
CE(PC)5 91	CO1		0.66			0.72	0.65				0.76	0.76	•
CE(PC)5 94	CO1		0.64			0.70	0.72						
CE(PC)5 95	CO1		0.74	0.71					0.84				
CE(PC)5 96	CO1		0.73	0.72	0.68						0.72		
CE(PC)5 97	CO1		0.69						0.85			0.87	
CE(PC)6	CO1		0.67			0.68	0.67						
01	CO2		0.68				0.68	0.78		0.73			
CE(PC)6	CO1		0.73			0.73	0.63						
02	CO2		0.67				0.73	0.77				0.79	
CE(PC)6	CO1		0.73			0.69	0.67						
03	CO2		0.74				0.72	0.73					
CE(PC)6	CO1		0.73	0.69	0.67			0.67		0.75			
04	CO2		0.72	0.69	0.70			0.77			0.77	0.77	
CE(PE)6	CO1		0.74		0.67				0.79	0.74	0.71		
01B	CO2		0.74				0.64		0.87			0.74	
CE(PE)6	CO1		0.74			0.72	0.65						
02A	CO2		0.73				0.68	0.76	0.76	0.76	0.74		
CE(PC)6	CO1	0.6	0.71	0.66	0.68	0.71	0.69	0.76	0.87	0.76	0.70	0.76	0.70

93		6											
CE(PC)6 94	CO1	0.6 4	0.73						0.78		0.74		
CE(PC)6 95	CO1		0.70						0.79				
CE(OE)	CO1	0.7 7	0.70	0.68	0.63	0.66	0.67	0.77	0.77	0.77	0.68	0.79	0.67
701A	CO2	0.7 7	0.73	0.67	0.70	0.77	0.73	0.77	0.77	0.77	0.71	0.78	0.69
CE(PE)7	CO1	0.7 3	0.72	0.65	0.65	0.73	0.69	0.81	0.81	0.81	0.73	0.88	0.71
01C	CO2	0.7 7	0.71	0.71	0.70	0.72	0.71	0.81	0.89	0.81	0.72	0.84	0.72
CE(PE)7	CO1	0.7 6	0.72	0.70	0.64	0.74	0.66	0.86	0.86	0.86	0.67	0.86	0.66
02A	CO2	0.7 8	0.72	0.66	0.66	0.67	0.73	0.86	0.86	0.86	0.71	0.86	0.70
CE(PE)7	CO1	0.7 2	0.70	0.73	0.63	0.65	0.73	0.83	0.86	0.83	0.76	0.83	0.73
03A	CO2	0.7 8	0.71	0.63	0.68	0.73	0.69	0.83	0.87	0.83	0.76	0.83	0.65
CE(PE)7	CO1	0.6 4	0.74	0.56	0.66	0.56	0.66	0.86	0.86	0.86	0.75	0.86	0.70
04C	CO2	0.7 8	0.68	0.66	0.70	0.66	0.75	0.86	0.86	0.86	0.69	0.86	0.73
CE(PE)7	CO1	0.5 9	0.69	0.69		0.71	0.70	0.79	0.82	0.79	0.68	0.79	0.69
05A	CO2	0.7 4		0.70	0.70	0.69	0.69	0.79	0.85	0.79	0.69	0.87	
CE(CV)7 91	CO1	0.7 0	0.70	0.68	0.67	0.78	0.72						
CE(PRO J)792	CO1	0.7 5	0.69	0.68	0.74	0.66	0.74	0.86	0.86	0.86	0.72	0.86	0.70
CE(PE)8 01D	CO1	0.6 6	0.66	0.66	0.76	0.67		0.76		0.76	0.72		
	CO2		0.67	0.70	0.70	0.69		0.76		0.76	0.71	0.89	0.69
CE(0E)8 01C	CO1	0.7 5	0.70	0.71	0.71	0.75		0.75	0.85	0.75	0.75	0.87	0.68
DEEP	CO2		0.65			0.72		0.75	0.75	0.75	0.69	0.83	0.69
CE(CV)8 91	CO1	0.6 3	0.73	0.73	0.80	0.81	0.82						
CE(PRO J)892	CO1	0.6 3	0.71	0.76	0.80	0.80	0.80	0.86	0.86	0.86	0.86	0.86	0.80
Average Attainme ecimal fraction)		0.7 0	0.70	0.69	0.70	0.70	0.69	0.66	0.63	0.70	0.70	0.64	0.70

Average Attainment(%	70	70	69	70	70	69	66	63	70	70	64	70	
)													

Department: Computer Science & Engineering PO Attainment of 2021-22

Data structure and		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
algorithm	CO1	101	0.80	0.80	10.	100	100	107	100	102	1010	1011	1012
PCC-CS301	CO2		0.84	0.84									
	CO3			0.88		0.88							
	CO4			0.91		0.91							
Data structure and algorithm	CO1	0.84	0.84	0.84									
Lab PCC- CS391	CO2	0.85	0.85										
FCC- CS591	CO3		0.86			0.86							
	CO4		0.90			0.90							
Computer Organization	CO1					0.84		0.84					
PCC-CS302	CO2					0.87		0.87					
	CO3									0.88			
	CO4					0.93		0.93					
Computer													
Organization Lab PCC-CS392	CO1					0.82		0.82					
	CO2					0.83		0.83					
	CO3									0.85			
	CO4					0.94		0.94					
Compiler Design													
PCC-CS501	CO1	0.83				0.83	0.83						
	CO2					0.84		0.84				0.84	
	CO3		0.85	0.85	0.85						0.85		
	CO4	0.86	0.86			0.86	0.86	0.86				0.86	
	CO5	0.94	0.94			0.94	0.94	0.94				0.94	
Operating													
Systems PCC- CS502	CO1					0.83		0.83					
	CO2			0.87	0.87						0.87		
	CO3			0.88	0.88			0.88			0.88		
Operating Systems Lab													
PCC-CS592	CO1		0.85										
	CO2			0.86	0.86						0.86		
	CO3			0.87	0.87						0.87		

	CO4				0.90							
Object Oriented												
Programming	CO1		0.81	0.81								
PCC-CS503												
1 00 05505	CO2		0.86	0.86								
	CO3			0.88		0.88						
	CO4			0.91		0.91						
	00.			0.51		0.51						
Object Oriented Programming Lab												
	CO1	0.82	0.82	0.82								
PCC-CS593	CO2	0.85	0.85									
	CO3		0.86			0.86						
	CO4		0.92			0.92						
Software												
Engineering ESC 501	CO1	0.83				0.83	0.83				0.83	
	CO2			0.84	0.84					0.84		
	CO3					0.86		0.86				
	CO4					0.88		0.88				
HSMC301 Economics for												
Engineers	CO1		0.82		0.82							
	CO2		0.85		0.85							
	CO3							0.87				0.87
Artificial Intelligence PEC-IT501B												
PEC-IT501B	CO1	0.86				0.86					0.86	
	CO2			0.87	0.87					0.87		
	CO3					0.93		0.93				
Industrial Management HSMC501,												
nsivicaul,	CO1		0.77		0.77							

	CO2	0.87		0.87					
	CO3	0.88				0.88			
Introduction to									
Philosophical Thoughts PEC-IT501B	CO1	0.77							
PEC-11501B	CO2	0.86							
	CO3	0.87		0.87					
	COS	0.87		0.87					
Cloud Computing PEC-CS701B									
	CO1					0.85			
	CO2					0.86			
	CO3	0.88							
Cyber Security PEC-CS 702E									
	CO1	0.86		0.86					0.86
	CO2		0.88	0.88					
	CO3			0.90					
Project Management and Interpreneurship (HSMC701)									
(423-130-130)	CO1	0.76		0.76					
	CO2	0.86		0.86					
	CO3	0.87							0.87
Design and Analysis of Algorithms PCC-CS404									
	CO1	0.83							
	CO2	0.86	0.86	0.86				0.86	
]	I .	I		I		

	CO3				0.87	0.87		
	CO4		0.92	0.92			0.92	0.92
	CO5				0.93	0.93		
Design and Analysis of Algorithm Lab PCC- CS494								
65424	CO1		0.84	0.84			0.84	
	CO2		0.86	0.86			0.86	
	CO3		0.88	0.88			0.88	
	CO4		0.89	0.89			0.89	
	CO5		0.92	0.92			0.92	
	CO6		0.94	0.94			0.94	
Computer								
Architecture PCC-CS402	CO1		0.83	0.83			0.83	
	CO2		0.85	0.85			0.85	
	CO3				0.91	0.91		
Computer Architecture Lab								
PCC-CS492	CO1		0.85	0.85			0.85	
	CO2		0.92	0.92			0.92	
	CO3				0.94	0.94		
Formal Language & Automata								
PCC-CS403	CO1	0.84						
	CO2		0.85	0.85			0.85	
	CO3				0.85	0.85		
	CO4		0.87	0.87			0.87	
	CO5				0.88	0.88		
	CO6	0.88						
	CO7							0.89

	~~1											
DBMS	CO1		0.83									
PCC-CS601	CO2			0.87	0.87					0.87		
	CO3		0.94									
	CO4				0.95							
DBMS LAB	CO1					0.86		0.86				
DDMS LAD	CO2		0.87							0.87		
	CO3	0.92				0.92	0.92				0.92	
	CO4							0.93				
Computer Networks	CO1			0.83		0.83						
PCC-CS602	CO2	0.85	0.85			0.85						
	CO3				0.87	0.87						
	CO4				0.93	0.93						
ComputerNetworks Lab	CO1		0.83					0.83				
PCC-CS692	CO2		0.86		0.86							
	CO3							0.88				
	CO4				0.93							
	CO1		0.83									
PROJ-CS601	CO2		0.93		0.93							
	CO3							0.95				
Image Processing PEC-IT601D	CO1			0.83		0.83						
	CO2	0.85	0.85			0.85						
	CO3				0.93	0.93						
	CO4				0.95	0.95						

1	CO1					0.83		0.83			
	COI					0.03		0.03			
Pattern Recognition	CO2		0.85		0.85						
1 uttern recognition	CO3	0.86				0.86	0.86			0.86	
	COS	0.00				0.00	0.00			0.00	
	CO4	0.86				0.86	0.86			0.86	
	CO5				0.87						
OEC-IT601B											
	CO1		0.83		0.83			0.83			
	CO2		0.86		0.86			0.86			
	CO2		0.00		0.00			0.00			
	CO3							0.88			0.88
Cryptography & Network	CO1		0.83								
Security CS801D											
CSOVID	CO2		0.84		0.84						
	CO3	0.85	0.85				0.85	0.85			
	CO4		0.91		0.91						
	CO4		0.91		0.91						
	CO5		0.93								
E-Commerce & ERP											
OEC-CS802A											
	CO1				0.83						
	CO2					0.85		0.85			
	CO3	0.85				0.85	0.85			0.85	
	COS	0.85				0.85	0.85			0.85	
	CO4					0.86		0.86			
	CO5	0.91				0.91	0.91			0.91	
Soft Skill											
&Interpersonal Communication	CO1							0.83			
	CO2										0.85
OEC-CS801E,	CO2										0.05
	CO3							0.88			
BIOLOGY (BSC-											
401)	~~:					0.00		0.02			
	CO1					0.83		0.83			
	CO2				0.84			0.84			0.84
	CO3			0.85							0.85
				J.U.J							
							_		•		

	CO4												0.86
	CO5		0.88										
Average PO attainment		0.86	0.85	0.86	0.87	0.87	0.87	0.87	0	0.86	0.87	0.87	0.86
% Po attainment		86%	85%	86 %	87%	87%	87%	87%	0%	86%	87%	87%	86%

Program OutcomesWITH GRADUATE ATTRIBUTES for Management (MBA) Program:

1. PO1: Understand and evaluate the different aspects of business management theories including the required skills needed for effective leadership, organisational management, group/team work, communication, link with society, economy, and allied subjects/stakeholders.

Covers the following Graduate Attributes:

GA1: ENGINEERING KNOWLEDGE/BUSINESS ADMINISTRATION KNOWLEDGE

GA9: INDIVIDUAL AND TEAM WORK

GA10: COMMUNICATION

2. PO2: Identify, formulate, research, review literature on business administration/management/industry and provide solutions for real life problems faced by organisations or business set ups in present times/contemporary era

Covers the following Graduate Attributes:

GA2: PROBLEM ANALYSIS

GA3: DESIGN AND DEVELOPMENT OF SOLUTIONS

GA4: INVESTIGATION OF COMPLEX PROBLEMS

3. PO3: Create, envision, select and apply appropriate techniques and resources/IT enabled tools of modern management including analytical/statistical tools to solve contemporary organisational issues/problems

Covers the following Graduate Attributes:

GA5: MODERN TOOL USAGE

GA11: LIFELONG LEARNING

4. PO4: Understand ethical, legal, responsible and sustainable organisational citizenship and apply interventions for the same to ensure all round development of the society and environment

Covers the following Graduate Attributes:

GA6: BUSINESS AND SOCIETY

GA8: ETHICS

GA7: ENVIRONMENT AND SUSTAINABILITY

5. PO5: Develop entrepreneurial mindset along with clear concepts of various business solutions concerning marketing, finance, project development, human resources, operations, training/development along with other allied fields in domestic and international markets.

Covers the following GAs:

GA12: PROJECT MANAGEMENT AND FINANCE

GA11: LIFELONG LEARNING

(covers most other GAs)

Mapping of COs to Pos

HR 401, MANPOWER PLANNING, RECRUITMENT& SELECTION

	PO1	PO2	PO3	PO4	PO5
CO1	Н	M	M	M	Н
CO2	Н	Н	Н	Н	Н

HR 406, INTERNATIONAL HRM

	PO1	PO2	PO3	PO4	PO5
CO1	M	M	M	L	Н
CO2	M	M	M	L	Н

MB 102, ORGANIZATIONAL BEHAVIOUR

	PO1	PO2	PO3	PO4	PO5
CO1	Н	M	M	M	M
CO2	Н	M	M	M	M

MB 206, HUMAN RESOURCE MANAGEMENT

	PO1	PO2	PO3	PO4	PO5
CO1	Н	M	M	M	Н
CO2	Н	M	M	M	Н

HR 301, TEAM DYNAMICS AT WORK

	PO1	PO2	PO3	PO4	PO5
CO1	Н	M	M	M	M
CO2	Н	M	M	M	M

MB 303, Internship Project and Viva Voce

	PO1	PO2	PO3	PO4	PO5
CO1	M	M	M	M	M

Program Outcomes with Attainment percentage:

2020 Odd and 2021 Even Semester

Paper Name	COs	PO1	PO2	PO3	PO4	PO5
NAD 404	CO1	0.84	0.84	0.84	0.84	0.84
MB 101	CO2	0.84	0.84	0.84	0.84	0.84
MB 102	CO1	0.88	0.88	0.88	0.88	0.88
	CO2	0.88	0.88	0.88	0.88	0.88
NAD 102	CO1	0.83	0.83	0.83	0.83	0.83
MB 103	CO2	0.83	0.83	0.83	0.83	0.83
MB 104	CO1	0.83	0.83	0.83	0.83	
	CO2	0.83	0.83			0.83
	CO1		0.65			
MD 10E	CO2	0.65				
MB 105	CO3		0.65			
	CO4	0.65				

MB 106	CO1	0.84	0.84			
	CO2	0.84	0.84			
	CO1	0.84	0.84	0.84	0.84	0.84
MB 201	CO2	0.84	0.84	0.84	0.84	0.84
MB 202	CO1	0.72	0.72	0.72	0.72	0.72
	CO2	0.72	0.72	0.72	0.72	0.72
	CO1	0.74				
	CO2		0.74	0.74		
MB 203	CO3			0.74	0.74	0.74
	CO4			0.74	0.74	
NAD 205	CO1	0.94	0.94	0.94	0.94	0.94
MB 205	CO2	0.94	0.94	0.94	0.94	0.94
14D 20G	CO1	0.90	0.90	0.90	0.90	0.90
MB 206	CO2	0.90	0.90	0.90	0.90	0.90
MB 301	CO1	0.95	0.95	0.95	0.95	0.95
	CO2	0.95	0.95	0.95	0.95	0.95
NAD 202	CO1	0.82	0.82	0.82	0.82	0.82
MB 302	CO2	0.82	0.82	0.82	0.82	0.82
110204	CO1	0.93	0.93	0.93	0.93	0.93
HR301	CO2	0.93	0.93	0.93	0.93	0.93
LID204	CO1	0.82	0.82	0.82	0.82	0.82
HR304	CO2	0.82	0.82	0.82	0.82	0.82
	CO1	0.82		0.82	0.82	0.82
NANAZOZ	CO2	0.82	0.82	0.82	0.82	
MM302	CO3		0.82	0.82		
	CO4					0.82

	CO1	0.80	0.80	0.80	0.80	
	CO2		0.80	0.80		
MM303	CO3		0.80	0.80		
	CO4		0.80	0.80		0.80
	CO1	0.76	0.76	0.76	0.76	0.76
HR 401	CO2	0.76	0.76	0.76	0.76	0.76
	CO1	0.81	0.81	0.81	0.81	0.81
HR 402	CO2	0.81	0.81	0.81	0.81	0.81
	CO1	0.82	0.82	0.82	0.82	0.82
HR 404	CO2	0.82	0.82	0.82	0.82	0.82
	CO1	0.83	0.83	0.83	0.83	
MM401	CO2	0.83	0.83	0.83		0.83
	CO1	0.76				
	CO2	0.76	0.76	0.76	0.76	
MM 403	CO3		0.76	0.76	0.76	0.76
	CO4					0.76
	CO1	0.76		0.76		
	CO2		0.76	0.76	0.76	
MM404	CO3		0.76	0.76		
	CO4			0.76	0.76	
	CO1	0.76				
MM406	Co2		0.76	0.76		
	CO3			0.76	0.76	0.76
	СО			0.76	0.76	

	CO1	0.76		0.76		
FM401	CO2		0.76	0.76	0.76	
ENAMO2	CO1		0.76	0.76		
FM402	CO2			0.76	0.76	
ENMOE	CO1	0.76				
FM405	CO2		0.76	0.76		
EN LOC	CO1			0.76	0.76	0.76
FM406	CO2			0.76	0.76	
Average Attainment		0.81	0.82	0.81	0.82	0.83
% of Attainment		81%	82%	81%	82%	83%

PO NO.	BROAD	ELABORATE
1	Engineering	Apply the knowle
	knowledge	engineering fundan
2	Problem	Identify, formulate, research literature, and analyse complex
	analysis:	engineering problems reaching substantiated conclusions usi
3	Design/devel	
	opment of	public health and safety, and cultural, societal, and environme
4	Conduct	Use research-based knowledge and research methods include
	investigation	interpretation of data, and synthesis of the information to prov
	s of	
5	Modern tool	Create, select, and apply appropriate techniques, resources,
	usage:	activities, with an understanding of the limitations.
6	The	Apply reasoning informed by the contextual knowledge to ass
	engineer	the professional engineering practice.
	and society:	
7	Environment	Understand the impact of the professional engineering solutio
	and	sustainable development.
	sustainabilit	
	V'	A
8	Ethics:	Apply ethical principles and commit to professional ethics and
9	Individual	Function effectively as an individual, and as a member or lea
-	and team	,
	work:	
10	Communicat	Communicate effectively on complex engineering activities wi
	ion:	write effective reports and design documentation, make effect
		J
11	Project	Demonstrate knowledge and understanding of the engineer
	management	to manage projects and in multidisciplinary environments
12	Life-long	Recognise the need for, and have the preparation and ability
	learning:	

PROGRAM SPECIFIC OUTCOMES

PSO1: Ability to apply the knowledge of Basic Computing, Basic Sciences and Social Sciences in the field of electrical engineering to identify, analyze and so life problems faced in industries and/or during research work.

PSO2: Ability to model, test, analyze and design components or processes rel modern power system involving both conventional and renewable energy resolvoltage systems and energy management.

PSO3: Ability to apply the concept of circuit theory, electromagnetic field thec and basic electronics to solve complex problems of electrical machines and dripower electronic converters and electrical system design.

PSO4: Ability to identify and analyze the role of measurement, instrumentatic modern control engineering to enhance sustainability, reliability and efficiency electrical systems.

PSO5: Ability to demonstrate proficiency in operating and handling modern er tools to cop up with dynamic industrial environment.

PSO6: Ability to work and communicate effectively in the corporate life keepir responsible outlook towards socio-economic and environmental issues.

JRSE OUTCOMES

Name

CO6	design filter circuits.
CO5	estimate parameters of two-port networks.
CO4	select suitable techniques of network analysis for efficient solution.
CO3	apply network theorems and different tools to solve network problems.
CO2	explain different network theorems, coupled circuit and tools for solution
CO1	describe different type of networks, sources and signals with examples.

Naı

CO1	1. describe analog electronic components and analog electronics circuits
CO2	2. explain principle of operation of analog electronic components, filters, I
CO3	3. compute parameters and operating points of analog electronic circuits.
CO4	4. determine response of analog electronic circuits.
CO5	5. distinguish different types amplifier and different types oscillators base
CO6	6. construct operational amplifier based circuits for different applications.

Name of

CO1	1. Relate different coordinate systems for efficient solution of electromagi
CO2	2. describe mathematical s tools to solve electromagnetic problems.
CO3	3. explain laws applied to electromagnetic field.
CO4	4. apply mathematical tools and laws to solve electromagnetic problems.
CO5	5. analyze electromagnetic wave propagation
CO6	6. estimate transmission line parameters

Nam

Course	After completing this course, the students will be able to:
CO1	explain the co-ordinate system, principle of three dimensional rotation, kir
CO2	elaborate the theory of general motion, bending moment, torsional motio
CO3	develop free body diagram of different arrangements.

CO4	solve problems with the application of theories and principle of motion , f
CO5	analyze torsional motion and bending moment.
CO1	explain basics of probability theories, rules, distribution and properties of
CO2	describe different methods of numerical analysis.
СОЗ	solve numerical problems based on probability theories , numerical analy
CO4	apply numerical methods to solve engineering problems.
CO5	5. solve engineering problems using z transform and probability theory.
	Nan
Course	Upon completion of this course, students will be able to:
CO1	Describe with examples the biological observations lead to major discover
CO2	Explain the classification of kingdom of life the building blocks of life
CO3	Different techniques of bio physics used to study biological phenomena.
CO4	The role of imaging in the screening, diagnosis, staging, and treatments
CO5	Identify DNA as a genetic material in the molecular basis of information
CO6	Analyze biological processes at the reductionistic level.
CO7	Apply thermodynamic principles to biological systems.
CO8	Identify microorganisms
	Na
Course	After completing this course, the students will be able to:
CO1	Describe different features of Indian constitution. Power and functioning of
CO2	Identify authority to redress a problem in the profession and in the socie
	Nama
	Name o
_	
Course	Up
CO1	Determine transient response of different electrical circuit, frequency res
CO2	Generate different signals in both discrete and analog form
CO3 CO4	Analyze amplitude and phase spectrum of different signals.
CO5	Verify network theorems.
CO5	Construct circuits with appropriate instruments and safety precautions.
CUS	Simulate electrical circuit experiments using suitable software. Name
	Name
Carrer	
Course	Up

Course	Up
	At
CO1	Determine characteristics of full wave rectifier with filter and without filte
CO2	Verify function of DAC and ADC
CO3	Construct function generator using IC, R-C coupled amplifier, linear voltage

CO4	Work in a team
CO5	Validate theoretical learning with practical Special Remarks: The above-m
	Name

Course	Upon successful completion of the course, student will have:
CO1	Solve problems with Newton forward /backward, Lagrange's interpolation
CO2	problems of numerical integration using Trapezoidal rule, Simpson's 1/3
CO3	rule, Weddle's rule problems to find numerical solution of a system of line
CO4	Gauss elimination and Gauss-Seidel iterations. problems to find numerical
CO5	Ordinary differential equation by Euler's and Runga-Kutta methods.
CO6	Find appropriate numerical methods to solve engineering problems.
CO7	Use software package to solve numerical problems.

Na

Course	Up
CO1	Describe the function of different components of magnetic circuit, DC mag
CO2	Explain the principle of operation of different types of DC machines and tr
CO3	Solve numerical problems of DC machines and transformers.
CO4	Estimate the parameters and efficiency of transformer.
CO5	Determine the characteristics of DC machines
CO6	recommend methods to control output of DC machines.

Nan

Course	Up
CO1	Describe the function of different building blocks of digital electronics, ser
CO2	Explain the principle of operation of combinational and sequential digital of
CO3	Solve numerical problems of Boolean algebra, number system, combinati
CO4	Specify applications of combinational and sequential digital circuits.
CO5	Determine specifications of different digital circuits.
CO6	Design combinational and sequential digital circuits

Name of the S

Course	Up
CO1	Explain the terms accuracy, precision, resolution, speed of response, erro
CO2	Describe methods of measurement of power, energy by instruments and
CO3	Explain the principle of operation of analog meters, instrument transform
CO4	Explain the different building block, principle of operation of oscilloscope a
CO5	Solve numerical problems related to analog meters, instrument transform
CO6	Specify applications of analog and digital measuring instruments, sensors
	Name or
_	

Course	Upon successful completion of the course, student will have:

201	
CO1	Describe the function of different components of boilers. Engines and turk
CO2	Explain the principle of operation of different types of boilers, turbines, IC
CO3	Solve numerical problems of boilers, turbines, IC engines and Gas turbine
CO4	Analyze the performance of boilers, engines and turbines.
CO5	Determine efficiency of boilers, engines and turbines.
CO6	Explain methods to control boiler, engines and turbines parameters.
	Name of t
	Name of t
Course	Upon successful completion of the course, student will have:
Course CO1	
	Upon successful completion of the course, student will have:
CO1	Upon successful completion of the course, student will have: 1. Illustrate different aspects of human values, ethics, engineers' respons
CO1 CO2	Upon successful completion of the course, student will have: 1. Illustrate different aspects of human values, ethics, engineers' respons 2. Explain different principles, different theories and laws of engineering e
CO1 CO2 CO3	Upon successful completion of the course, student will have: 1. Illustrate different aspects of human values, ethics, engineers' respons 2. Explain different principles, different theories and laws of engineering e 3. Identify different factors in the light of Engineers' responsibility toward

Course	Upon successful completion of the course, student will have:
CO1	Understand the natural environment and its relationships with human ac
CO2	Apply the fundamental knowledge of science and engineering to assess ϵ
CO3	Develop guidelines and procedures for health and safety issues obeying the
CO4	Acquire skills for scientific problem-solving related to air, water, noise& la
	Name of t

Course	Upon successful completion of the course, student will have:
CO1	Identify appropriate equipment and instruments for the experiment.
CO2	Test the instrument for application to the experiment.
CO3	Construct circuits with appropriate instruments and safety precautions
CO4	Validate different characteristics of DC machine, methods of speed contr
CO5	Work effectively in a team

Name of t

Upon successful completion of the course, student will have:
Identify appropriate equipment and instruments for the experiment
2. Test the instruments for application to the experiment
3. Construct decoder, multiplexer, adder and subtractor circuits with app
4. Realize RS-JK and D flip flop, universal register with gates, multiplexer
5. Validate the operation of code conversion circuit –BCD to Excess 3 & v
Work effectively in a team

Name of the Subject

Course	Upon successful completion of the course, student will have:
	1. identify appropriate equipment and instruments for the experiment

2. test the instrument for application to the experiment
3. construct circuits with appropriate instruments and safety precautions
4. evaluate and adjust the precision and accuracy of AC energy meter, m
5. measure voltage, current, power, energy, phase, frequency, resistance
6. work effectively in a team

Name of the 5

Upon successful completion of the course, student will have:
Identify appropriate equipment and instruments for the experiment
Construct experimental setup with appropriate instruments and safety pr
Identify different parts of Lanchashire Boiler, Bahcock & Willcox Boiler, Co
Test 4 stroke petrol engine by electrical load box and diesel engine by ele
Find calorific value, flash point, fire point, cloud point, pour point of fuel.
Work effectively in a team

Name of t

Course	On successful completion of the course the student will be able to:
	1. To understand the arrangement of windings of AC machines.
	2. To understand the principle of production of pulsating and revolving m
	3. To understand the principle of operation and characteristics of three pl
	4. To understand the principle of operation and characteristics of single p
	5. To understand the principle of operation and characteristics of synchro
	6. To understand the principle of operation and characteristics of special
	7. To solve problems of Induction machines, synchronous machines and s

Course After completion of this course the students will be able to:

To understand the basic principle of generation of Electricity from differer

To find parameters and characteristics of overhead transmission lines and

To find different parameters for the construction of overhead transmission

To determine the performance of transmission lines.

To understand the principle tariff calculation.

To solve numerical problems on the topics studied.

Course	On completion of this course a student will be in a position to:
CO1	1. To find mathematical representation of LTI systems.
CO2	2. To find time response of LTI systems of different orders
CO3	3. To find the frequency response of LTI systems of different orders
CO4	4. To understand stabilityof differentLTI systems.
CO5	5. To analyze LTIsystems with state variables.
CO6	6. To solve problems of mathematical modelling and stability of LTI syste

Course	On completion of this course a students will be able to
CO1	To understand the functioning and characteristics of power switching dev
CO2	To understand the principle of operation of converters.
CO3	To understand different triggering circuits and techniques of commutation
CO4	To find external performance parameter of converters.
CO5	To analyze methods of voltage control, improvement of power factor and
CO6	To solve numerical problems of converters

Name of

Course	After completion of the course, the students will be able to:
CO1	identify appropriate equipment and instruments for the experiment.
CO2	test the instrument for application to the experiment.
CO3	construct circuits with appropriate instruments and safety precautions.
CO4	validate different characteristics of single phase Induction motor, three pl
CO5	work effectively in a team

Name (

Course	On completion of this course a students will be able to
CO1	identify appropriate equipment and instruments for the experiment.
CO2	test the instrument for application to the experiment.
CO3	3. construct circuits with appropriate instruments and safety precautions.
CO4	4. validate different characteristics of transmission line.
CO5	5. determine earth resistance, dielectric strength of insulating oil, breakd
CO6	6. analyze an electrical transmission line circuit with the help of software
CO7	7. work effectively in a team
CO4 CO5 CO6	4. validate different characteristics of transmission line.5. determine earth resistance, dielectric strength of insulating oil, bre6. analyze an electrical transmission line circuit with the help of softw

Name c

After completion of this course the students will be able to
identify appropriate equipment and instruments for the experiment.
test the instrument for application to the experiment.
construct circuits with appropriate instruments and safety precautions.
use MAT-Lab control system tool box, MAT-Lab- simulink tool box & PSP
5. determinecontrol system specifications of first and second order syster

Name of

Course	On completion of this course a students will be able to
CO1	identify appropriate equipment and instruments for the experiment.
CO2	test the instrument for application to the experiment.
CO3	construct circuits with appropriate instruments and safety precautions

Name o

Course	On completion of this course a student will be in a position to:
CO1	differentiate how the choices of data structure & algorithm methods enha
CO2	solve problems based upon different data structure & also write programs
CO3	write programs based on different data structure
CO4	identify appropriate data structure & algorithmic methods in solving probl
CO5	discuss the computational efficiency of the principal algorithms for sorting
CO6	comparethe benefits of dynamic and static data structures implementatio
	Name of

Name of

v	ea	۳.	3rd	
	Ca		JIU	

Course	After completion of this course the students will be able to
CO1	specify simple abstract data types.
CO2	recognise features of object-oriented design such as encapsulation, polyn
CO3	inheritance, and composition of systems based on object identity.
CO4	apply common object-oriented design patterns
CO5	specify uses of common object oriented design patterns with examples.
CO6	design applications with an event-driven graphical user interface.

Course	After completion of the course, the students will be able to:
Course	Arter completion of the course, the students will be able to.
CO1	Represent power system components in line diagrams.
CO2	Determine the location of distribution substation.
CO3	Determine the performance of power system with the help of load flowv s
CO4	Analyse faults in Electrical systems.
CO5	Determine the stabilty of Power system.
CO6	Explain principle of operation of different power system protection equipn
CO7	Solve numerical problems related to representation, load flow, faults, stal
	Name of the

Name of the

Year: 3 rd	
Course	After completion of the course, the students will be able to
CO1	1. explain the architecture of 8086 and 8051.
CO2	2. do assembly language programming of 8086, 8051
CO3	3. interface different peripheral with 8086 and 8051
CO4	4. develop micro processor/ microcontroller based systems.
CO5	5. compare microprocessor, microcontroller, PIC and ARM processors
	A.I

Name

Course	On completion of this course a students will be able to
CO1	explain the principle of sampling and reconstrction of analog signal. syst
CO2	perform Z-transformation and inverse Z-tranaformation of systems.
CO3	analyse and design digital control
CO4	design compensators for digital control system to achieve desired specifi

CO5	represent digital control systems using state space models.
CO6	analyze the effect sampling on stability, controllability and observability
	Na

CO1 choose intelligently AC and DC transmission systems for the dedicated at identify the suitable two-level/multilevel configuration for high power cor select the suitable protection method for various converter faults.

CO4 4. identify suitable reactive power compensation method.

CO5 5. decide the configuration for harmonic mitigation on both AC and DC sides for the configuration for harmonic mitigation on both AC and DC sides for the dedicated at identify the suitable two-level/multilevel configuration for high power converter faults.

CO4 6. solve numerical problems related to converters, power flow analysis, related to converters.

Name

Course	After completion of this course the students will be able to
CO1	specify the rating of electrical machines with standard specifications.
CO2	explain the principles of electrical machine design and carry out basic des
CO3	3. determine the various factors which influence the design of electrical, r
CO4	4. explain the construction and performance characteristics of electrical n
CO5	5. use software tools to do design calculations.

Name of

Course	On completion of this course a students will be able to
CO1	explain the principle of Electric traction.
CO2	choose a suitable drive scheme for developing an electric hybrid vehicle d
CO3	design and develop basic schemes of electric vehicles and hybrid electric
CO4	choose proper energy storage systems for vehicle applications
CO5	implement different energy management strategies for hybrid vehicle.

Nam₍

Course	analyse uncompensated AC transmission line.				
Outcomes	explain the working principles of FACTS devices and their operating chara				
	3. apply FACTS devices for power flow control and stabilty.				
	4. identify different issues of power quality in distribution system.				
	5. apply different compensation and control techniques for DSTATCOM6.				
Name of the	e Subject: INDUSTRIAL ELECTRICALSYSTEMS				
Subject Cod	le: PE-EE-602C				
Year: 3 rd					
Course	1. Represent electrical wiring system for residential, commercial and indu				
Outcomes	2. Determine the rating of components of residential and commercial elec				
	3. Design lighting scheme for a residential and commercial premises.				
	4. Select transformer, switchgear, protection equipments for industrial ele				
	5. explain methods of automation of Industrial Electrical Systems				
	6. Solve numerical problems related to earthing system, lighting scheme,				

Name of the Subject: DIGITAL SIGNALPROCESSING Subject Code: PE-EE-601A Year: 3rd Course 1. represent signals mathematically in continuous and discrete-time and i Outcomes 2. analyse discrete-time systems using z-transform. 3. explain the Discrete-Fourier Transform (DFT) and the FFT algorithms. 4. design digital filters for various applications. 5. apply digital signal processing for the analysis of real-life signals. Name of the Subject: COMMUNICATION ENGINEERING **Subject Code:** PE-EE-601B Year: 3rd Course 1. compare the performance of AM, FM and PM schemes with reference to Outcomes 2. explain noise as a random process and its effect on communication rec 3. evaluate the performance of ASK, FSK, PSK, BPSK, QPSK in a digital co 4. identify source coding and channel coding schemes for a given commu 5. analyze various digital modulation methods 6. compute band width requirement and probability of error in various dic Name of the Subject: VLSI AND MICROELECTRONICS Subject Code: PE-EE-603C Year: 3rd 1. explain the principle of design of VLSI circuits Course **Outcomes** 2. explain different MOS structure with characteristics 3. apply different processes for VLSI fabrication 4. use programming language for the design of logic circuits 5. draw the stick diagram and layout for simple MOS circuits Name of the Subject: ECONOMICS FOR ENGINEERS **Subject Code:** HM-EE-601 Year: 3rd Course 1. evaluate the economic theories, cost concepts and pricing policies **Outcomes** 2. explain the market structures and integration concepts 3. apply the concepts of financial management for project appraisal 4. explain accounting systems, the impact of inflation, taxation, deprecia 5. analyze financial statements using ratio analysis 6. explain financial planning, economic basis for replacement, project sch Name of the Subject: POWER SYSTEM-II LABORATORY **Subject Code:** PC-EE 691 Year: 3rd Course 1. Identify appropriate equipment and instruments for the experiment. 2. Test the instrument for application to the experiment. **Outcomes** 3. Construct circuits with appropriate instruments and safety precautions 4. Validate the characteristics of under voltage relay, over current relay, 5. Validate protection schemes of transformer, generator, motor and feed 7. work effectively in a team Name of the Subject: MICRO PROCESSOR AND MICRO CONTROLLERLABORATORY Subject Code: : PC-EE 692 Year: 3rd

1. identify appropriate equipment and instruments for the experiment

Course

- **Outcomes** 2. test the instrument for application to the experiment
 - 3. construct circuits with appropriate instruments and safety precautions
 - 4. program 8086 for arithmatic operation, sorting of array, searching for
 - 5. interface ADC/DAC, 8255, 8251 to 8086 and LCD, keyboard to 8051
 - 6. program 8051 using arithmatic, logical and bit manipulation instruction
 - 7. work effectively in a team

Name of the Subject: ELECTRICAL AND ELECTRONICS DESIGNLABORATORY

Subject Code: PC-EE 681

Year: 3rd

Course Outcomes

- 1. explain basic concept of measurement, noise in electronic system, sens
- 2. implement PC based data acquisition systems
- 3. construct circuits with appropriate instruments and safety precautions
- 4. design heating elements, air core grounding reactor, power distribution
- 5. do wiring and installation design of a multistoried residential building w
- 6. design electronic hardware for controller of lift, speed of AC/DC motor,

Name of the Subject: ELECTRIC DRIVE

Subject Code: PC-EE 701

Year: 4[™]

Course **Outcomes**

- 1. Explain the principle of operation of Electric Drive.
- 2. Describe different methods of starting and braking of Electric Drive.
- 3. Model and control DC Drive
- 4. Control speed of Induction and Synchronous motors.
- 5. Recommend drives for different applications.
- 6. Estimate ratings, variables and parameters of Electric Drives.

Name of the Subject: CONTROL SYSTEM DESIGN

Subject Code: PE-EE 701 A

Year: 4[™]

Course **Outcomes**

- 1. explain the effect of gain, addition of pole and zeros on system's performance of the system's performance of t
- 2. describe time domain and frequency domain design specifications.
- 3. demonstrate the effect of nonlinearity on system performance.
- 4. design control system in time domain, in frequency domain and in sta
- 5. design PID controllers.
- 6. select appropriate method for design of control system.

Name of the Subject: ELECTRICAL ENERGY CONSERVATION& AUDITING

Subject Code: : PE-EE 701B

Year: 4[™]

Course **Outcomes**

- 1. explain the basic of energy resources, energy security, energy conserv
- 2. quantify the energy conservation opportunities in different thermal sys
- 3. quantify the energy conservation opportunities in different electrical sy
- 4. identify the common energy conservation opportunities in different ene
- 5. explain the methods of energy management and audit.
- 6. analyse and report the outcome of energy audit

Name of the Subject: POWER GENERATION ECONOMICS

Subject Code: : PE-EE 701C

Year: 4[™]

Course

1. explain the different terms e.g. load factor etc for economics of genera

2. apply different types of tariff for electricity pricing. Outcomes 3. optimize the operation of power system with unit commitment. 4. determine generation levels such that the total cost of generation beco 5. determine the state of the system given by the voltage magnitudes an 6. predict the power or energy needed to balance the supply and load del Name of the Subject: ARTIFICIAL INTELLIGENCE **Subject Code:** OE-EE-701A Year: 4[™] Course 1. explain the concept of knowledge representation and predicate logic ar **Outcomes** 2. describe state space and its searching strategies 3. demonstrate proficency in applying scientific method to models of mach 4. apply the machine learning concepts in real life problems 5. demonstrate an ability to share in discussions of AI, its current scope a Name of the Subject: INTERNET OF THINGS Subject Code: OE-EE-701B Year:4[™] 1. explain the definition and usage of the term "Internet of Things" in different terms of the term th Course Outcomes 2. explain the key components that make up an IoT system. 3. differentiate between the levels of the IoT stack and be familiar with t 4. build and test a IoT system involving prototyping, programming and date 5. apply cloud computing and data analytics in a typical IoT system Name of the Subject: COMPUTER GRAPHICS Subject Code: OE-EE-701C Year: 4[™] 1. explain Computer graphics and graphic systems. Course 2. test and implement line drawing algorithm, circle and ellipse drawing a Outcomes 3. Perform 2D and 3D transformation and viewing. 4. apply algorithms for visible surface determination. 5. explain colors and shading models and ray tracing. Name of the Subject: EMBEDDED SYSTEM **Subject Code:** OE-EE 702A Year: 4[™] 1. discuss the definition, purpose, application, classification, quality char-Course 2. explain the internal structure of the Embedded system. **Outcomes** 3. interface IO devices and other peripherals with micro controllers in Em 4. write programs for Micro controllers in Embedded systems. 5. apply the concept of Embedded firmware in design of Embedded system Name of the Subject: DIGITAL IMAGE PROCESSING Subject Code: OE-EE 702B Year: 4[™] Course 1. explain the fundamental concepts of a digital image processing system Outcomes 3. apply different image segmentation techniques. 4. categorize various compression techniques. 5. implement image process and analysis algorithms. 6. apply image processing algorithms in practical applications. Name of the Subject: COMPUTER NETWORK

Subject Code: : OE-EE 702C

Year: 4 TH	
Course	1. explain the concepts of data communication and networking.
Outcomes	2. identify the different types of network topologies and protocols.
	3. describe the function of a network system with OSI and TCP/IP model
	4. differentiate different types of routing protocol.
	5. apply principles of congestion control .
	6. implement different schemes for security of the networks.
Name of the	e Subject: PRINCIPLE OF MANAGEMEENT
	le: : HM-EE 701
Year: 4 [™]	
Course	1. explain the concepts and approaches of management.
Outcomes	2. demonstrate the roles, skills and functions of management.
	3. diagnose and solve organizational problems.
	4. identify the complexities associated with management of human resou
	5. apply different methods of Customer, Operation and Technology mana
	6. acquire skills of good leader in an organization.
Name of the	e Subject: ELECTRIC DRIVE LABORATORY
	le: PC-EE 791
Year: 4 [™]	
Course	1. identify appropriate equipment and instruments for the experiment.
Outcomes	2. test the instrument for application to the experiment.
	3. construct circuits with appropriate instruments and safety precautions
	4. apply different methods of control of Electric Drive in the laboratory.
	5. analyse experimental data obtained in the laboratory.
	6. work effectively in a team
Name of the	e Subject: UTILIZATION OF ELECTRIC POWER
	le: : PC-EE 801
Year: 4 [™]	
Course	1. explain the fundamentals of illumination and different lighting schemes
Outcomes	3. able to select appropriate lighting, heating and welding techniques for
	4. apply different electrolysis process for different applications.
	5. explain the principle of different aspect of Electric traction and control
Name of the	e Subject: LINE COMMUTATED AND ACTIVE PWM RECTIFIERS
	de: PE-EE 801A
Year: 4 TH	
Course	1. explain the principle of operation of different converters.
Outcomes	2. suggest the application of different filters.
	3. apply converters for different applications.
	4. analyze converter circuits.
	5. develop appropriate scheme for control of different converters.
	6. solve numerical problems relating to different converters.
Name of the	e Subject: POWER SYSTEM DYNAMICS AND CONTROL
	de: PE-EE 801B
Year: 4 TH	IC. FL-LL OUID
Course	1. explain the model of power system components
Outcomes	2. select the appropriate model for required analysis.
	3. analyze the performance of the system with small signal analysis.

4. evaluate the stability of the single and multi machine systems. 5. develop measures for enhancing the stability of the system. 6. Solve numerical problems of linear dynamical system, modeling of diffe Name of the Subject: ADVANCED ELECTRIC DRIVE Subject Code: PE-EE 801C Year: 4TH 1. explain the principle of operation of converters for AC drives. Course **Outcomes** 2. model Induction and Synchronous motor by reference frame theory. 3. apply different control methods to control speed and torque of Inductic 4. explain the configurations and method of speed control of BLDC, PMSN 5. realize basic blocks for DSP based motion control. 6. develop appropriate scheme for speed control of Induction and Synchri Name of the Subject: INDUSTRIAL AUTOMATION AND CONTROL **Subject Code:** : PE-EE 801D Year: 4TH Course 1. explain the basic structure of industrial automation and control 2. classify different types of control actions of controllers. **Outcomes** 3. analyze control strategies of different processes of industry. 4. illustrate the construction and use of different types of actuators and c 5. use PLC, DCS and SCADA in advanced industrial control. Name of the Subject: SOFT COMPUTING TECHNIQUES Subject Code: OE-EE 801A Year: 4[™] 1. explain soft computing techniques and their roles in building intelligent Course **Outcomes** 2. anlyse the feasibility of application of soft computing techniques for a r 3. effectively use existing software tools to solve real problems using a sc 4. evaluate solutions by various soft computing approaches for a given pr 5. apply different soft computing techniques to solve Engineering problem Name of the Subject: BIOMEDICAL INSTRUMENTATION Subject Code: OE-EE 801B Year: 4[™] 1. describe the principle of medical transducers for temperature, pressure Course **Outcomes** 2. explain the principle of operation of Biomedical recorders, Medical Ima-3. use different Medical laboratory equipments for different tests. 4. analyze any measurement application and suggest suitable measurem 5. suggest suitable imaging methodology for a specific ailment. Name of the Subject: INTRODUCTION TO MACHINE LEARNING **Subject Code:** OE-EE 801C Year: 4[™] 1. explain the basics concepts and classification of Machine Learning. Course **Outcomes** 2. write simple programs using python. 3. describe Supervised Learning concepts. 4. explain the concept of Support Vector Machine. 5. describe unsupervised learning concepts and dimensionality reduction 6. apply Machine Learning in a range of real-world applications.

Name of the Subject: SENSORS AND TRANSDUCERS

Subject Code: OE-EE 801D

- 1. explain the basic principle of operation of Transducers and Sensors.
- 2. distinguish different sensors and transducers.
- 3. identify suitable transducer by comparing different industrial standards
- 4. estimate the performance of different transducers.
- 5. design real life electronics and instrumentation measurement systems

PROGRAMME OUTCOMES (PO) BASED ON G.A.

		PO1	PO2	PO3	PO4
Course	CO1	0.67	0.67	0.67	0.67
Outcomes	CO2	0.67	0.67	0.67	0.67
	CO3	0.67	0.67	0.67	
	CO4	0.67	0.67	0.67	0.67
	CO5	0.67	0.67	0.67	
	CO6	0.67	0.67	0.67	0.67
Course	CO1	0.66	0.66	0.66	0.66
Outcomes	CO2	0.66	0.66	0.66	0.66
	CO3	0.66	0.66	0.66	
	CO4	0.66	0.66	0.66	0.66
	CO5	0.66	0.66	0.66	
	CO1	0.74	0.74	0.74	0.74
Course	CO2	0.74	0.74	0.74	0.74
Outcomes	соз	0.74	0.74	0.74	0.74
	CO4	0.74	0.74	0.74	0.74
	CO5	0.74	0.74	0.74	0.74
	CO6	0.74	0.74	0.74	0.74

	lco1	0.77	0.77	0.77	0.77
Course	CO2	0.77	0.77		0.77
Outcomes	CO3	0.77	0.77	0.77	0.77
Outcomes	CO4	0.77	0.77	0.77	0.77
	CO5	0.77	0.77		0.77
	CO1	0.78			0.78
	CO2	0.78			0.78
Course	CO3	0.78	0.78		0.78
Outcomes	CO4	0.78	0.78		0.78
• attorned	CO5	0.78	0.78		0.78
	CO6	0.78	0.78		0.78
	CO1	0.75			
	CO2	0.75			0.75
Course	соз	0.75			0.75
Outcomes	CO4	0.75			0.75
	CO5	0.75			0.75
	CO6	0.75			0.75
	CO1	0.92			
	CO2				
Course	CO1	0.9	0.9	0.9	0.9
Outcomes	CO2	0.9	0.9	0.9	0.9
	CO3	0.9	0.9	0.9	
	CO4	0.9	0.9	0.9	0.9
	CO5	0.9	0.9	0.9	
	CO6	0.9			0.9
Course	CO1	0.89			0.89
Outcomes	CO2	0.89			0.89
	CO3	0.89			
	CO4	0.89			0.89
	CO5	0.89			
	CO1	0.84			0.84
Course	CO2	0.84			0.84
Outcomes	CO3	0.84			0.84
	CO4	0.84			0.84
	CO5	0.84			0.84 0.84
	CO1	0.87			0.87
	CO2	0.87			0.87
Course	CO3	0.87	0.87	0.07	0.67
Outcomes	CO4	0.87			
	CO5	0.87	0.87		
	CO6	0.87			0.87
	CO1	0.76			
Course	CO2	0.76			0.76
Course	CO3	0.76			
Outcomes	CO4	0.76			
	CO5	0.76			
		0.70	3.70	3.70	5.70

	CO6	0.76	0.76	0.76	0.76
	CO1	0.72	0.72	0.72	0.72
Course	CO2	0.72	0.72	0.72	
Outcomes	CO3	0.72	0.72	0.72	
Outcomes	CO4	0.72			
	CO5	0.72			0.72
	CO6	0.72	0.72	0.72	
	CO1	0.71	0.71	0.71	0.71
Course	CO2	0.71	0.71		
Outcomes	CO3	0.71	0.71	0.71	
Gutcomes	CO4	0.71			
	CO5	0.71			0.71
	CO6	0.71	0.71	0.71	0.71
	CO1	0.88	0.88	0.88	0.88
Course	CO2	0.88	0.88	0.88	
Outcomes	соз	0.88	0.88	0.88	
2	CO4	0.88			
	CO5	0.88			0.88
	CO6	0.88	0.88	0.88	0.88
	CO1	0.95	0.95	0.95	0.95
Course	CO2	0.95	0.95	0.95	
Outcomes	соз	0.95	0.95	0.95	
0.00000	CO4	0.95			
	CO5	0.95			0.95
	CO6	0.95	0.95	0.95	0.95
	CO1	0.76	0.76	0.76	0.76
Course	CO2	0.76	0.76		
Outcomes	CO3	0.76	0.76	0.76	
	CO4	0.76			
	CO5	0.76			0.76
	CO6	0.76	0.76	0.76	0.76
	CO1	0.92	0.92	0.92	0.92
Course	CO2	0.92	0.92	0.92	
Outcomes	CO3	0.92	0.92	0.92	
	CO4	0.92			
	CO5	0.92			0.92
	CO6	0.92	0.92	0.92	0.92
	CO1	0.91	0.91	0.91	0.91
Course	CO2	0.91	0.91	0.91	
Outcomes	CO3	0.91	0.91	0.91	
	CO4	0.91			
	CO5	0.91			0.91
	CO6	0.91	0.91	0.91	0.91
	CO1	0.87	0.87	0.87	0.87
Course	CO2	0.87	0.87	0.87	
Outcomes	CO3	0.87	0.87	0.87	
	CO4	0.87			

	CO5	0.87			0.87
	CO6	0.87	0.87	0.87	0.87
	CO1	0.67	0.67	0.67	
Course	CO2	0.67			0.67
Outcomes	соз	0.67			0.67
	CO4				0.67
	CO5		0.67	0.67	
	CO6	0.67	0.67	0.67	
	CO1	0.84	0.84	0.84	
Course	CO2	0.84			0.84
Outcomes	CO3	0.84			0.84
	CO4				0.84
	CO5		0.84	0.84	
	CO6	0.84	0.84	0.84	
	CO1	0.71	0.71	0.71	
Course	CO2	0.71			0.71
Outcomes	соз	0.71			0.71
	CO4				0.71
	CO5		0.71	0.71	
	CO6	0.71	0.71	0.71	
	CO1	0.92	0.92	0.92	
Course	CO2	0.92			0.92
Outcomes	СОЗ	0.92			0.92
	CO4				0.92
	CO5		0.92	0.92	
	CO6	0.92	0.92	0.92	
	CO1	0.63	0.63	0.63	
Course	CO2	0.63			0.63
Outcomes	CO3	0.63			0.63
	CO4				0.63
	CO5		0.63	0.63	
	CO6	0.63	0.63	0.63	
	CO1	0.87	0.87	0.87	
Course	CO2	0.87			0.87
Outcomes	CO3	0.87			0.87
	CO4				0.87
	CO5		0.87	0.87	
	CO6	0.87	0.87	0.87	
	CO1	0.68	0.68	0.68	
Course	CO2	0.68			
Outcomes	CO3	0.68			
	CO4				
	CO5		0.68	0.68	
	CO6	0.68	0.68	0.68	
	CO1	0.83	0.83	0.83	
Course	CO2	0.83			
Outcomes	CO3	0.83			

	CO4	1			
	CO5		0.83	0.83	
	CO6	0.83	0.83	0.83	
	CO1	NA	NA	NA	NA
Course	CO2	NA	NA	NA	NA
Outcomes	CO3	NA	NA	NA	NA
	CO4	NA	NA	NA	NA
	CO5	NA	NA	NA	NA
	CO6	NA	NA	NA	NA
	CO1		0.83	0.83	0.83
Course	CO2	0.83	0.83		
Outcomes	соз	0.83	0.83		
	CO4	0.83			
	CO5	0.83		0.83	0.83
	CO6	0.83	0.83	0.83	0.83
	CO1	0.71	0.71	0.71	0.71
Course	CO2	0.71	0.71		
Outcomes	соз	0.71	0.71		
	CO4	0.71			
	CO5	0.71		0.71	0.71
	CO6	0.71	0.71	0.71	0.71
	CO1	0.68	0.68	0.68	0.68
Course	CO2	0.68	0.68		
Outcomes	CO3	0.68	0.68		
	CO4	0.68			
	CO5	0.68		0.68	0.68
	CO6	0.68	0.68	0.68	0.68
	CO1	NA	NA	NA	NA
Course	CO2	NA	NA	NA	NA
Outcomes	соз	NA	NA	NA	NA
	CO4	NA	NA	NA	NA
	CO5	NA	NA	NA	NA
	CO6	NA	NA	NA	NA
	CO1	0.73	0.73	0.73	0.73
Course	CO2	0.73	0.73		
Outcomes	CO3	0.73			
	CO4	0.73			
	CO5	0.73		0.73	0.73
	CO6	0.73	0.73	0.73	0.73
	CO1	0.89	0.89	0.89	0.89
Course	CO2	0.89			
Outcomes	CO3	0.89	0.89		
	CO4	0.89			
	CO5	0.89		0.89	
	CO6	0.89		0.89	
	CO1	0.65		0.65	0.65
Course	CO2	0.65	0.65		

CO4	comes co3	nes co3	65 0.65	5	1
Course			65 0.65	5	
COURSE CO2	CO5	CO5 0	65 0.65	0.65	0.65
Course Outcomes CO2 0.89 0.89 0.89 CO4 0.89 0.89 0.89 0.89 CO5 0.89 0.89 0.89 0.89 CO6 0.89 0.89 0.89 0.89 CO1 0.92 0.92 0.92 0.92 CO2 0.92 0.92 0.92 0.92 CO4 0.92 0.92 0.92 0.92 CO5 0.92 0.92 0.92 0.92 CO6 0.92 0.92 0.92 0.92 CO1 0.68 0.68 0.68 0.68 CO1 0.68 0.68 0.68 0.68 CO2 0.69 0.68 0.68 0.68 CO4 0.69 0.68 0.68 0.68 CO5 0.68 0.68 0.68 0.68 CO4 0.69 0.68 0.68 0.68 CO4 0.0 0.69 0.68 0.68<	CO6	CO6 0	65 0.65	0.65	0.65
Outcomes CO3 0.89 0.89 0.89 CO4 0.89 0.89 0.89 0.89 CO5 0.89 0.89 0.89 0.89 CO6 0.89 0.89 0.89 0.89 CO1 0.92 0.92 0.92 0.92 CO3 0.92 0.92 0.92 0.92 CO4 0.92 0.92 0.92 0.92 CO5 0.92 0.92 0.92 0.92 CO6 0.92 0.92 0.92 0.92 CO1 0.68 0.68 0.68 0.68 CO4 0.68 0.68 0.68 0.68 CO4 0.68 0.68 0.68 0.68 CO5 0.68 0.68 0.68 0.68 CO4 0.68 0.68 0.68 0.68 CO5 0.68 0.68 0.68 0.68 CO1 NA NA NA NA <	CO1	CO1 0	89 0.89	0.89	0.89
Outcomes CO3 0.89 0.89 0.89 CO4 0.89 0.89 0.89 0.89 CO5 0.89 0.89 0.89 0.89 CO1 0.92 0.92 0.92 0.92 CO3 0.92 0.92 0.92 0.92 CO4 0.92 0.92 0.92 0.92 CO5 0.92 0.92 0.92 0.92 CO5 0.92 0.92 0.92 0.92 CO1 0.68 0.68 0.68 0.68 CO1 0.68 0.68 0.68 0.68 CO3 0.68 0.68 0.68 0.68 CO4 0.68 0.68 0.68 0.68 CO5 0.68 0.68 0.68 0.68 CO4 0.68 0.68 0.68 0.68 CO5 0.68 0.68 0.68 0.68 CO1 NA NA NA NA <	urse ^{CO2}	e ^{CO2} 0	89 0.89		
COS			89 0.89		
COB		•	89 0.89)	
COURSE CO2	CO5	CO5 0	89 0.89	0.89	0.89
Course Outcomes CO2 0.92 0.92 0.92 CO4 0.92 0.92 0.92 0.92 CO5 0.92 0.92 0.92 0.92 CO6 0.92 0.92 0.92 0.92 CO1 0.68 0.68 0.68 0.68 CO2 0.68 0.68 0.68 0.68 CO3 0.68 0.68 0.68 0.68 CO4 0.68 0.68 0.68 0.68 CO5 0.68 0.68 0.68 0.68 CO1 NA NA NA NA NA CO2 NA NA NA NA NA CO3 NA NA NA NA NA CO4 NA NA NA NA NA CO5 NA NA NA NA NA CO4 NA NA NA NA NA CO5 <t< td=""><td>CO6</td><th>CO6 0</th><td>89 0.89</td><td>0.89</td><td>0.89</td></t<>	CO6	CO6 0	89 0.89	0.89	0.89
Outcomes CO3 0.92 0.92 0.92 CO4 0.92 0.92 0.92 0.92 CO5 0.92 0.92 0.92 0.92 CO1 0.68 0.68 0.68 0.68 COurse CO3 0.68 0.68 0.68 CO4 0.68 0.68 0.68 0.68 CO5 0.68 0.68 0.68 0.68 CO1 NA NA NA NA NA CO1 NA NA NA NA NA NA CO4 0.68 <td>CO1</td> <th>CO1 0</th> <td>92 0.92</td> <td>0.92</td> <td>0.92</td>	CO1	CO1 0	92 0.92	0.92	0.92
Outcomes C03 0.92 0.92 0.92 C04 0.92 0.92 0.92 0.92 C05 0.92 0.92 0.92 0.92 C01 0.68 0.68 0.68 0.68 C01 0.68 0.68 0.68 0.68 C04 0.68 0.68 0.68 0.68 C05 0.68 0.68 0.68 0.68 C01 NA NA NA NA NA C01 NA NA NA NA NA NA C01 NA	urse ^{CO2}	e ^{CO2} 0	92 0.92	2	
CO4			92 0.92	2	
Cool			92 0.92	2	
CO1	CO5	CO5 0	92 0.92	0.92	0.92
Course Outcomes CO2 0.68 CO4 0.68 CO5 0.68 0.68 0.68 CO6 0.68 0.68 0.68 CO1 NA NA NA NA COurse CO2 NA NA NA NA Outcomes CO3 NA NA NA NA NA CO4 NA NA NA NA NA NA CO5 NA NA NA NA NA NA CO5 NA NA NA NA NA NA CO6 NA NA NA NA NA NA CO1 NA NA NA NA NA NA CO4 NA NA NA NA NA NA CO4 NA NA NA NA NA NA CO5 NA	CO6	CO6 0	92 0.92	0.92	0.92
Outcomes CO3 0.68 0.68 CO4 0.68 0.68 0.68 CO5 0.68 0.68 0.68 CO6 0.68 0.68 0.68 CO1 NA NA NA NA CO2 NA NA NA NA NA CO3 NA NA NA NA NA CO4 NA NA NA NA NA CO5 NA NA NA NA NA CO6 NA NA NA NA NA CO1 NA NA NA NA NA Outcomes CO2 NA NA NA NA CO4 NA NA NA NA NA CO5 NA NA NA NA NA CO4 NA NA NA NA NA CO5 NA NA NA	CO1	CO1 0	68 0.68	0.68	0.68
Outcomes CO3 0.68	urse ^{CO2}	e ^{CO2} 0	68		0.68
CO4			68		0.68
Co6			68		0.68
COURSE CO2 NA NA NA NA NA NA NA NA CO4 NA	CO5	CO5 0	68 0.68	0.68	0.68
Course Outcomes CO2 NA	CO6	CO6 0	68 0.68	0.68	0.68
Outcomes CO3 NA NA NA NA NA C04 NA NA NA NA NA NA NA C05 NA	CO1	CO1 NA	NA	NA	NA
Outcomes CO3 NA NA NA NA NA CO4 NA NA NA NA NA NA CO5 NA NA NA NA NA NA CO6 NA NA NA NA NA NA CO1 NA NA NA NA NA NA COurse CO2 NA NA NA NA NA CO4 NA NA NA NA NA NA CO5 NA NA NA NA NA NA CO1 0.9 0.9 0.9 0.9 0.9 0.9 CO4 0.9 0.9 0.9 0.9 0.9 0.9 0.9 CO5 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.	urse ^{CO2}	e coz NA	NA	NA	NA
CO4 NA NA NA NA NA NA CO5 NA NA NA NA NA NA CO6 NA NA NA NA NA NA CO1 NA NA NA NA NA CO1 NA NA NA NA NA CO2 NA NA NA NA NA CO3 NA NA NA NA NA NA CO4 NA NA NA NA NA CO5 NA NA NA NA NA NA CO6 NA NA NA NA NA CO1 0.9 0.9 0.9 CO2 CO3 0.9 0.9 CO4 0.9 0.9 CO5 0.9 0.9 0.9 CO5 0.9 0.9 0.9 CO6 0.9 0.9 0.9 CO7 0.9 0.9 0.9 CO8 0.9 0.9 0.9 CO9 0.9 0.9 0.9 CO1 NA			NA	NA	NA
Cob			NA	NA	NA
Course Outcomes Outcomes Outcomes CO2 NA NA NA NA NA NA NA NA NA N	CO5	CO5 NA	NA	NA	NA
Course Outcomes CO2 NA NA NA NA NA CO3 NA	CO6	CO6 NA	NA	NA	NA
Outcomes CO3 NA NA NA NA NA CO4 NA NA NA NA NA NA NA CO5 NA NA NA NA NA NA NA CO6 NA NA NA NA NA NA NA CO1 0.9	CO1	CO1 NA	NA	NA	NA
Outcomes CO3 NA NA NA NA NA CO4 NA NA NA NA NA NA CO5 NA NA NA NA NA NA CO6 NA NA NA NA NA NA CO1 0.9	urse ^{CO2}	e ^{CO2} NA	NA	NA	NA
CO5 NA NA NA NA NA NA CO6 NA NA NA NA NA CO1 0.9 0.9 0.9 CO2 0.9 0.9 0.9 CO3 0.9 0.9 0.9 CO4 0.9 0.9 0.9 CO5 0.9 0.9 0.9 CO5 0.9 0.9 0.9 CO6 0.9 0.9 0.9 CO6 0.9 0.9 0.9 CO1 NA NA NA NA NA COURSE Outcomes CO2 NA NA NA NA NA NA NA NA NA NA NA			NA	NA	NA
Co6 NA NA NA NA Co1 0.9 0.9 0.9 0.9 Course CO2 0.9 0.9 0.9 0.9 CO3 0.9	CO4	CO4 NA	NA	NA	NA
Course CO2	CO5	CO5 NA	NA	NA	NA
Course Outcomes CO2 0.9 0.9 0.9 CO3 0.9 0.9 0.9 CO4 0.9 0.9 0.9 CO5 0.9 0.9 0.9 CO6 0.9 0.9 0.9 CO1 NA NA NA NA NA NA NA NA NA Outcomes CO3 NA NA NA NA NA NA NA NA NA	CO6	CO6 NA	NA	NA	NA
Outcomes CO3 0.9 0.9 0.9 CO4 0.9 0.9 0.9 0.9 CO5 0.9 0.9 0.9 0.9 CO6 0.9 0.9 0.9 0.9 CO1 NA NA NA NA NA COurse CO2 NA NA NA NA NA Outcomes CO3 NA NA NA NA NA CO4 NA NA NA NA NA	CO1	CO1	0.9	0.9	0.9
Outcomes CO3 0.9 0.9 0.9 CO4 0.9 0.9 0.9 0.9 CO5 0.9 0.9 0.9 0.9 CO6 0.9 0.9 0.9 0.9 CO1 NA NA NA NA NA COurse CO2 NA NA NA NA NA Outcomes CO3 NA NA NA NA NA CO4 NA NA NA NA NA	urse ^{CO2}	se ^{co2}	0.9	0.9	0.9
CO4 0.9 0.9 0.9 0.9 CO5 0.9 0.9 0.9 0.9 CO6 0.9 0.9 0.9 0.9 CO1 NA NA NA NA NA COurse CO2 NA NA NA NA NA Outcomes CO3 NA NA NA NA NA CO4 NA NA NA NA NA			0.9)	
Co6 0.9 0.9 0.9 Co1 NA NA NA NA NA NA NA NA NA Outcomes CO3 NA NA NA NA NA CO4 NA NA NA NA NA NA			0.9)	
Course CO2 NA NA NA NA Outcomes CO3 NA NA NA NA NA CO4 NA NA NA NA NA NA	CO5	CO5	0.9	0.9	0.9
Course Outcomes CO2 NA NA NA NA NA CO3 NA NA NA NA NA NA CO4 NA NA NA NA NA NA	CO6	CO6	0.9	0.9	0.9
Outcomes CO3 NA NA NA NA CO4 NA NA NA NA NA	CO1	CO1 NA	NA	NA	NA
Outcomes CO3 NA NA NA NA CO4 NA NA NA NA	urse co2	Se CO2 NA	NA	NA	NA
CO4 NA NA NA NA			NA	NA	NA
CO5 NA NA NA NA		•	NA	NA	NA
	CO5	CO5 NA	NA	NA	NA
CO6 NA NA NA NA	CO6	CO6 NA	NA	NA	NA
CO1 0.87 0.87 0.87	CO1	CO1 0	87 0.87	0.87	0.87

Course	CO2	0.87	0.87	0.87	0.87
Outcomes	CO3	0.87			0.87
Outcomes	CO4	0.87	0.87	0.87	0.87
	CO5	0.87			
	CO6	0.87	0.87	0.87	0.87
	CO1	0.86	0.86	0.86	
Course	CO2	0.86	0.86	0.86	0.86
Outcomes	CO3	0.86	0.86	0.86	0.86
outcomes	CO4	0.86	0.86		0.86
	CO5	0.86	0.86		0.86
	CO6	0.86	0.86		0.86
	CO1	0.83	0.83	0.83	0.83
Course	CO2	0.83	0.83		
Outcomes	соз	0.83			
3 4 5 5 111 5 5	CO4	0.83	0.83	0.83	0.83
	CO5	0.83	0.83	0.83	
	CO6	0.83	0.83	0.83	
	CO1	0.92	0.92	0.92	0.92
Course	CO2	0.92	0.92		
Outcomes	CO3	0.92			
	CO4	0.92	0.92	0.92	0.92
	CO5	0.92	0.92	0.92	
	CO6	0.92	0.92	0.92	
	CO1	NA	NA	NA	NA
Course	CO2	NA	NA	NA	NA
Outcomes	CO3	NA	NA	NA	NA
	CO4	NA	NA	NA	NA
	CO5	NA	NA	NA	NA
	CO6	NA	NA	NA	NA
	CO1	NA	NA	NA	NA
Course	CO2	NA	NA		NA
Outcomes	CO3	NA	NA	NA	NA
	CO4	NA	NA	NA	NA
	CO5	NA	NA	NA	NA
	CO6	NA	NA	NA	NA
	CO1	0.82	0.82	0.82	
Course	CO2	0.82	0.82	0.82	
Outcomes	CO3	0.82		0.82	
	CO4	0.82	0.82	0.82	
	CO5	0.82	0.82	0.82	
	CO6	0.82		0.82	
	CO1	0.84	0.84	0.84	0.84
Course	CO2	0.84		0.84	0.84
Outcomes	CO3	0.84			
	CO4	0.84			
	CO5	0.84		0.84	
	CO6	0.84	0.84	0.84	0.84

	CO1	NA	NA	NA	NA
Course	CO2	NA	NA	NA	NA
Outcomes	CO3	NA	NA	NA	NA
	CO4	NA	NA	NA	NA
	CO5	NA	NA	NA	NA
	CO6	NA	NA	NA	NA
	CO1	NA	NA	NA	NA
Course	CO2	NA	NA	NA	NA
Outcomes	CO3	NA	NA	NA	NA
	CO4	NA	NA	NA	NA
	CO5	NA	NA	NA	NA
	CO6	NA	NA	NA	NA
	CO1	NA	NA	NA	NA
Course	CO2	NA	NA	NA	NA
Outcomes	CO3	NA	NA	NA	NA
	CO4	NA	NA	NA	NA
	CO5	NA	NA	NA	NA
	CO6	NA	NA	NA	NA
	CO1	NA	NA	NA	NA
Course	CO2	NA	NA	NA	NA
Outcomes	CO3	NA	NA	NA	NA
	CO4	NA	NA	NA	NA
	CO5	NA	NA	NA	NA
	CO6	NA	NA	NA	NA
	CO1	0.82	0.82		
Course	CO2	0.82	0.82	0.82	
Outcomes	CO3	0.82	0.82	0.82	
	CO4	0.82	0.82	0.82	
	CO5	0.82	0.82	0.82	0.82
	CO6	0.82	0.82	0.82	0.82
ī	CO1	0.86			
Course	CO2	0.86	0.86		
Outcomes	CO3	0.86	0.86		
	CO4	0.86	0.86		
	CO5	0.86	0.86		
	CO6	0.86	0.86		
	CO1	0.91	0.91	0.91	0.91
Course	CO2	0.91	0.91	0.91	0.91
Outcomes	CO3	0.91	0.91	0.91	0.91
	CO4	0.91	0.91	0.91	0.91
	CO5	0.91	0.91	0.91	
	CO6	0.91	0.91	0.91	0.91
	CO1	0.92	0.92	0.92	0.92
Course	CO2	0.92	0.92	0.92	0.92
Outcomes	CO3	0.92	0.92	0.92	0.92
	CO4	0.92	0.92	0.92	0.92
	CO5	0.92	0.92	0.92	0.92

	CO6	0.92	0.92	0.92	0.92
	CO1	0.86	0.86		
Course	CO2	0.86	0.86		
Outcomes	CO3	0.86	0.86		
	CO4	0.86	0.86		
	CO5	0.86	0.86		
	CO6	0.86	0.86		
	CO1	0.87	0.87	0.87	0.87
Course	CO2	0.87	0.87	0.87	0.87
Outcomes	CO3	0.87	0.87	0.87	0.87
	CO4	0.87	0.87	0.87	0.87
	CO5	0.87	0.87	0.87	0.87
	CO6	0.87	0.87	0.87	0.87
	CO1	0.85	0.85		
Course	CO2	0.85	0.85		0.85
Outcomes	CO3	0.85	0.85		
	CO4	0.85	0.85		0.85
	CO5	0.85	0.85		0.85
	CO6	0.85	0.85		0.85
	CO1	0.94	0.94	0.94	0.94
Course	CO2	0.94	0.94	0.94	0.94
Outcomes	CO3	0.94	0.94	0.94	0.94
	CO4	0.94	0.94	0.94	0.94
	CO5	0.94	0.94	0.94	0.94
	CO6	0.94	0.94	0.94	0.94
	AVERAGE	0.818013937	0.822268908	0.819392265	0.81755814
	PERCENTAGE (%)	81	82	81	81

dge of mathematics, science,

nentals, and an engineering specialisation for the solution of complex engineering problem

ng first principles of mathematics, natural sciences, and engineering sciences.

gn system components or processes that meet the specified needs with appropriate considerations.

ling design of experiments, analysis and ide valid conclusions.

and modern engineering and IT tools, including prediction and modelling to complex engin

ess societal, health, safety, legal, and cultural issues and the consequent responsibilities

ons in societal and environmental contexts, and demonstrate the knowledge of, and need for

d responsibilities and norms of the engineering practice.

der in diverse teams, and in multidisciplinary settings.

th the engineering community and with the society at large, such as, being able to comprive presentations, and give and receive clear instructions.

ing and management principles and apply these to one's own work, as a member and lead

 γ to engage in independent and life-long learning in the broadest context of technological ϵ

l olve real

lated to urces, high

ory ves,

on and of
ngineering
ng a
e of the Subject: ELECTRIC CIRCUIT THEORY Subject Code: : PC-EE 301 Year: 2nd (New Syllabus)
of networks.
me of the Subject: ANALOG ELECTRONICS Subject Code: PC-EE 302 Year: 2nd (New Syllabus)
regulators and analog electronic circuits.
ed on application.
the Subject: ELECTRO MAGNETIC FIELD THEORY Subject Code: PC-EE 303 Year: 2nd (New Syllabus)
netic problems.
e of the Subject: ENGINEERING MECHANICS
Subject Code: ES-ME 301 Year: 2nd (New Syllabus)
nematics and kinetics of rigid bodies.
n and friction.

riction and rigid bodies.
Vame of the Subject: MATHEMATICS-III
Subject Code: BS- M 301
Year: 2nd (New Syllabus)
Z transform
sis and Z transform
e of the Subject: BIOLOGY FOR ENGINEERS
Subject Code: BS-EE- 301
Year: 2nd (New Syllabus)
ries.
of cancer.
transfer
me of the Subject: INDIAN CONSTITUTION
Subject Code: : MC-EE 301
Year: 2nd (New Syllabus)
f Union, state and local self-government.Structure, jurisdiction and function of Indian
Ty.
f the Subject: Electric circuit theory Laboratory
Subject Code: PC-EE391
Year: 2nd (New Syllabus)
on successful completion of the course, student will have:
ponse of filters, Laplace transform and inverse Laplace transform
of the Subject: : Analog Electronic laboratory
Subject Code: PC-EE392
Year: 2nd (New Syllabus)
on successful completion of the course, student will have:
fter completion of this course, the learners will be able to
er (A)characteristics of BJT and FET,(B)characteristics of Zener diode as voltage regula
ge regulator using regulator IC chip.timer circuit using 555 for monostable, astable an

nentioned outcomes are not limited. Institute may redefine outcomes based their progr of the Subject: : Numerical Methods laboratory **Subject Code:** PC-CS 391 **Year:** 2nd (New Syllabus) n ear equations using al solution of Algebraic Equation by Regularfalsi and Newton Raphson methods. me of the Subject: : ELECTRIC MACHINE-I **Subject Code:** PC-EE-401 **Year:** 2nd (New Syllabus) on successful completion of the course, student will have: chines and transformers ransformers ne of the Subject: : DIGITAL ELECTRONICS **Subject Code:** PC-EE-402 Year: 2nd (New Syllabus) on successful completion of the course, student will have: niconductor memories and programmable logic devices. circuits, A/D and D/A converter onal & sequential digital circuits and A/D and D/A converter. **ubject:** : ELECTRICAL & ELECTRONICS MEASUREMENTS **Subject Code:** PC-EE-403 **Year:** 2nd (New Syllabus) on successful completion of the course, student will have: ors in measurement, loading effect resistance, capacitance and inductance by bridges and potentiometer er, digital multimeter, digital voltmeter, digital frequency meter, signal generator, stra and measurement techniques of voltage, current, frequency and phase by oscilloscope ner, measurement of power, energy, resistance, inductance and capacitance and transducers f the Subject: : THERMAL POWER ENGINEERING Subject Code: ES-EE-401 **Year:** 2nd (New Syllabus)

pines
engines and Gas turbines.
≥S.
he Subject: : VALUES AND ETHICS IN PROFESSION
Subject Code: HM-EE-401
Year: 2nd (New Syllabus)
ibility and duties
ethics and social experimentation
s safety and risk
of the Subject: : ENVIRONMEMTAL SCIENCE
Subject Code: MC-EE-401
Year: 2nd (New Syllabus)
tivities
environmental and health risk
he environmental laws and regulations
ind pollution.
the Subject: : ELECTRIC MACHINE-I LABORATORY
Subject Code: PC-EE491
Year: 2nd (New Syllabus)
ol of DC motor and parallel operation of the transformer
he Subject: : DIGITAL ELECTRONICS LABORATORY
Subject Code: PC-EE492
Year: 2nd (New Syllabus)
propriate instruments and precaution
and flip-flops and asynchronous and synchronous up down counters
ice versa, 4 bit parity generator & comparator circuits,
t:: ELECTRICAL & ELECTRONICS MEASUREMENT LABORATORY
Subject Code: PC-EE493
Year: 2nd (New Syllabus)

oving iron and dynamometer type ammeter, voltmeter and wattmeter by potentiomet :e, inductance, capacitance
te, inductance, capacitance
,
Sala at a THERMAL DOWER ENGINEEING LARORATORY
Subject: : THERMAL POWER ENGINEEING LABORATORY
Subject Code: ES-ME-491
Year: 2nd (New Syllabus)
ecautions
ochran Boiler, Vertical Tubular Boiler, Locomotive Boiler, 4S Diesel Engine, 4S Petrol Er
ctrical load box and rope brake dynamometer
the Subject: ELECTRIC MACHINE-II PC-EE-501
Subject Code: PC-EE-501
Year: 3rd
agnetic fields.
nase Induction machines
hase Induction machines
nous machine
electromechanical devices.
special eletromechanical device.
Name of the Subject: POWER SYSTEM-I
Subject Code: : PC-EE-502
Year: 3rd (Old Syllabus)
nt sources
1 cables.
n line
lame of the Subject: CONTROL SYSTEM
Subject Code: PC-EE-503
Year: 3rd
ms
me of the Subject: POWER ELECTRONICS

Subject Code: PC-EE-504 Year: 3rd ices. 1 of SCR reduction of harmonics of the converter the Subject: ELECTRIC MACHINE-IILABORATORY **Subject Code:** : PC-EE 591 Year: 3rd hase Inductionmotor, Induction generator and synchronous motor, methods of speed of the Subject: POWER SYSTEM-I LABORATORY **Subject Code:** PC-EE 592 Year: 3rd own strength of solidinsulating material and dielectric constant of transformer oil. of the Subject: CONTROL SYSTEMLABORATORY **Subject Code:** PC-EE 593 Year: 3rd ICE for simulation of systems. the Subject: POWER ELECTRONICSLABORATORY **Subject Code:** PC-EE 594 **Year:** 3rd

of the Subject: DATA STRUCTURE & ALGORITHM

Subject Code: OE-EE-501A Year: 3rd nce the performance of the program. lem. 3, searching, and hashing ns. the Subject: OBJECT ORIENTED PROGRAMMING **Subject Code:** OE-EE-501B norphism, lame of the Subject: POWER SYSTEM-II **Subject Code:** PC-EE-601 Year: 3rd studies. nents. bilty and protection ofpower system. e Subject: MICROPROCESSOR & MICROCONTROLLER **Subject Code:** PC-EE-602 e of the Subject: DIGITAL CONTROL SYSTEM **Subject Code: PE-EE-601A Year:** 3rd tems.

cations.

me of the Subject: HVDC TRANSMISSION
Subject Code: PE-EE-601B
Year: 3 rd
fter completion of this course the students will be able to
pplication(s).
iverters.
des.
eactive power control.nts.
of the Subject: ELECTRICAL MACHINE DESIGN
Subject Code: PE-EE-601C
Year: 3 rd
ign of an ac machine
nagnetic and thermalloading of electrical machines
nachines.
the Subject: ELECTRICAL AND HYBRID VEHICLE
Subject Code: PE-EE-602A
Year: 3 rd
lepending on resources.
vehicles.
a of the Subject, DOMED OUALITYANDEACTS
e of the Subject: POWER QUALITYANDFACTS Subject Code: PE-EE-602B
Year: 3 rd
icteristics.
icteristics.
explain working principle of dynamic voltage restorer and UPQC
explain working principle of dynamic voltage restorer and of Qe
-
strial consumers.
ctrical systems.
ectrical systems.
power factor correction.
F

in the frequencydomain.
o SNR
ceivers
ommunication system nication link
THECKIOTI HITK
gital modulation systems
ıtion
eduling, legal andregulatory issues applied to economic investment and project-manage
earth fault relay, on loadtime delay relay, off load time delay relay, CT and PT.
der. 6. Apply software tools to find bus voltage, currents and power flows throughout t

a number in a string andstring manipulation
ns of 8051
sor and signal conditioning circuits
n system for small township, double circuit transmission line and Electric machines with lift and pump and for an applicationwith analog, digital, mixed signal, microcontroller and PCB
rmance.
te space.
ration and pollution. tems stems
ergy intensive industrialequipments
ition.

mes minimum for a definedlevel of load.
d phase angles at all buses. mand at all the times.
mana at an the times.
nd transform the real lifeinformation in different representation
id transform the real memormation in different representation
nine learning
and limitations, and societalimplications
erent contexts
he key technologies andprotocols employed at each layer of the stack
ata analysis
ılgorithm, areafilling algorithms.
acteristics and attributesof Embedded Systems
bedded systems.
ms. 6. design RTOS based Embedded systems.
. 2. enhance images in the spatial and frequency domain using various transforms.

rces in the organizationsand integrate the learning in handling these complexities. gement.
3. 2. explain the fundamental of Electrolytic processes, Electric heating and Welding. specific applications.
of traction motor.

erent components and stability.
on and Synchronous motor.
1 and SRM.
onous motor.
ontrol valves.
machines
particular problem
oft computing approach
roblem.
1S.
e and respiration rate.
ging equipments Surgical & Therapeutic Instruments and Medical Laboratory Instruments
nent methods.
ient methods.
techniques.

3 and procedures for measurement of physical parameters

. 6. apply smart sensors, bio-sensors, PLC and Internet of Things to different applicati

PO5	PO6	PO7	PO8	PO9	PO10
-					
0.67					
-					

•	Ī		i .	i
0.70				
0.78				
0.78				
	0.75			
		0.75		
		0.75		
		0.75		
	0.92	0.92		
	0.92	0.92		
	0.52	0.52		
0.9				
0.84				
0.84				
	0.76			
	-			

		1			
0.72	0.72			0.72	
	0.72			0.72	
	0.12			0.72	
	0.72				
0.72					
0.72					
0.71				0.71	
V.71				0.71	
				0.71	
0.71					
0.71	0.00			0.00	
0.88				0.88	
	0.88			0.88	
	0.88				
	0.88				
0.88					
0.88					
0.95				0.95	
	0.95			0.95	
	0.95				
	0.95				
0.95					
0.95					
0.76					
	0.76				
	0.76				
0.76					
0.76					
0.92					
	0.92				
	0.92				
	0.92				
0.92					
0.92					
0.91	0.91				
0.91					
0.91					
0.87	0.87				
	0.87				
	0.87				
	0.87				

0.87				
0.87				
		0.67		
	0.67			
	0.67			
0.67	0.67	0.67	0.67	
0.67			0.67	
		0.84		
-		0.84	0.84	
-			0.84	
		0.71		
	0.71	5.71		
	0.71			
	0.71	0.71	0.71	
	0.71	0.71	0.71	
			0.71	
		0.02		
	0.00	0.92		
	0.92			
	0.92			
	0.92	0.92	0.92	
			0.92	
		0.63		
		0.63	0.63	
			0.63	
		0.87		
		0.87	0.87	
			0.87	
		0.68		
		0.68	0.68	
			0.68	
		0.83		

		0.83		0.83	
				0.83	
NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA
			0.83		
				0.83	
				0.83	
			0.83	0.83	0.83
				0.83	0.83
			0.71		
			0.71		0.71
					0.71
			0.68		
			0.68		0.68
					0.68
NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA
	NA				NA
NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA
		0.73			
		0.73			
		0.73	0.73		0.73
					0.73
		0.89			
		0.89			
		0.89	0.89		0.89
					0.89
		0.65	0.65		

		0.65			
0.65					
0.65		0.65	0.65		0.65
0.65					0.65
		0.89	0.89		
		0.89			
0.89					
0.89		0.89	0.89		0.89
0.89					0.89
0.92					
0.92		0.92			
		0.92			
0.92		0.92	0.92		0.92
0.92					0.92
	0.68	0.68			
	0.68	0.68			
	0.68	0.68		0.68	
				0.68	
NA	NA	NA	NA		NA
	NA	NA	NA		NA
	NA	NA	NA		NA
	NA	NA	NA		NA
NA	NA	NA	NA	NA	NA
	NA	NA	NA		NA
	NA	NA	NA		NA
	NA	NA	NA		NA
	NA				NA
	NA		NA		NA
	NA	NA	NA		NA
	NA	NA	NA		NA
	0.9	0.9			
	0.9				
		0.9			
		0.9			
		0.0			
NA	NA	NA	NA	NA	NA
	NA	NA	NA NA	NA NA	NA
	NA		NA NA		NA
	NA NA	NA NA			NA NA
	NA NA	NA NA	NA NA		NA NA
	NA NA	NA NA	NA NA	NA NA	NA NA
IVA	IVA	IVA	IVA	IVA	IVA

	0.87	0.87	0.87		
	0.87		0.87		
	0.87		0.87		
	0.86				
	0.86				
	0.86				
	0.86				
	0.86				
0.83					
0.83					
0.83					
0.83	0.83				
	0.83				
0.83					
0.92					
0.92					
0.92					
0.92	0.92				
	0.92				
0.92					
NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA
0.82		0.82	0.82		
0.82		0.82	0.82		
	0.82	0.82	0.82		
	0.82				
0.82	0.82				
0.82		0.82	0.82		
0.84	0.84				
		0.84			
0.84					
0.84	0.84				
		0.84			
0.84	0.84	0.84			

NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA
	0.82				0.82
	0.82				0.82
		0.8	2		
		0.8			
		0.0.			
	_				
	_				0.86
	_				0.00
	_				
	_				
	0.91				
	0.51				0.91
				0.91	
		0.04		0.91	
		0.91	0.04		
			0.91		
	0.00				
	0.92				
					0.92
				0.92	
		0.92			
			0.92		

				0.86	
					0.86
			0.86		0.86
					0.86
_					0.87
					0.85
					0.85
					0.94
0.94					
	0.94				
				0.94	
		0.94			
0.812272727	0.796060606	0.8136	0.805090909	0.840923077	0.838873239
81	79	81	80	84	83

deration for

neering

relevant to

or

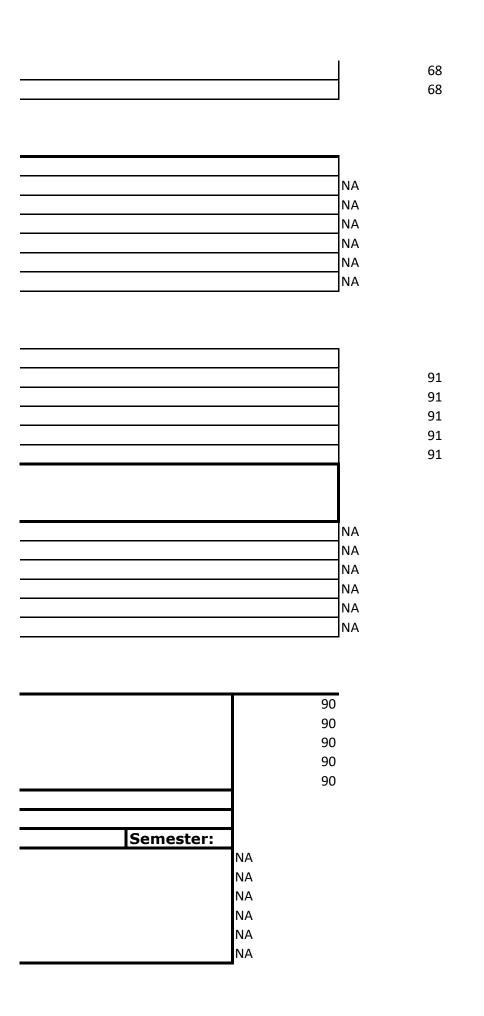
ehend and

der in a team,

change.

67
67
67
67
67
67
 66
66
66
66
 66
66
 7.4
 74
74
74
74
74
74
i
77
77
77

	77
	77
	, ,
	78
	78
-	78
	78
	78
	_
	75
	75
	75
	75
	75
	75
	75
	75
Judiciary,Basics of PIL and guideline for	92
Judicial Y/Dubics of 112 and galacime for	92
	92
-	
	90
	90
	90
	90
	90
	90
	89
	89
tor (C) characteristics of class A C and	89
tor, (C) characteristics of class A, C and	
	89
d multistable, multivibrator. V to I and I	89
·	•


	89
ram educational objective.	89
	84
	84
	84
	84
	84
	84
	84
	87
	87
	87
	87
	87
	87
	76
	76
	76
	76
	76
	76
	76
	7
	72
	72
in gauge, LVDT and temperature	72
	72
	72
	72
	7
	71

	71
	71
	71
	71
	71
	71
	88
	88
	88
	88
	88
	88
	95
	95
	95
	95
-	95
	33
	76
	76
	76
	76
	76
	76
	92
	92
	92
	92
	92
	92
	91
	91

	91
	91
or	91
er	91
	91
	91
	87
	87
ngine, 2S Petrol engine	87
igilie, 25 recibi eligilie	87
	87
	87
	67
	67
	67
	67
	67
	67
	67
	67
	71
	71
	71
	71
	71
	71
	71
	, _
	63
	63
	63
	63
	63
	63
	33
l	1

	1
	68
	68
-	68
	68
	68
	68
	58
-	1
	84
	84
	84
	84
control of Inductionmotors and parallel	84
·	84
	92
	92
	92
	92
	92
	92
	92
-]
	87
	87
-	87
	87
	87 87
	67
	Į
	83
	83
	83

	71
	71
	71
	71
	71
	71
5th sem	
Jui seiii	
	68
	68
	68
	68
	68
	68
	73
	73
	73
	73
	73
	73
	73
	65
	65
	65
-	
	65
	65
	68
	68
	68
	68
	00

Semester:	
	NA
Semester:	
Semesteri	87
	87
	87
	87
	87
	87
Samastan	
Semester:	NA
Semester:	
	86
	86 86
	86
	86
gement problems	86
Semester:	
	89
	89 89
	89 89
:he electrical system.	89
5,555	89
Semester:	
	89

		89 89 89 89
		89
Semester:		
		92
		92 92
		92
		92
		92
Semester:		
		83 83
		83
		83
		83
		83
Semester: 7 th	NIA	
	NA NA	
	NA	
	NA	
	NA NA	
Semester:	NA	
	NA	
	NA	
	NA NA	
	NA	
 Semester:		
		82

	82
	82
	82
	82
	82
Semester:	
Semester.	84
	84
	84
	84
	84
Semester:	
	NA
Semester:	
	NA
Semester:	
	NA
	NA
	NA
	NA
	NA NA
	NA
Semester:	
	NA
	NA
	NA
	NA NA
	NA

Semester:		
	82	
	82	
	82	
	82 82	
	82	
	01	
Semester:		
	86	
	86 86	
	86	
	86	
	86	
Semester:	92	
	92	
	92	
	92	
	92	
	92	
Semester:		
	86	
	86	
	86	
	86	
Semester:		
	NA	
	NA	
	NA	
	NA NA	
	NA NA	
Semester:		
	87	
	87 97	
	87	

	┪
]
Semester:	-
	NA NA
	NA
	NA
	NA
	NA
	┪
Semester:]
	NA
	NA NA
	NA NA
	NA
]
l Comportori	4
Semester:	NA
	NA
	NA
	NA NA
	INA
Semester:	_
ntc	NA NA
nts.	NA NA
	NA
	NA
	-
Semester:	┨
23651011	NA
	NA
	NA NA
	NA NA
	NA
]

	Semester:
ons.	
PO11	PO12

-	
0.71	
0.71	
0.71	
0.88	
0.88	
0.88	
0.88	
0.95	
0.95	
0.95	
0.95	
-	
-	

0.68
 0.68
0.68
0.68
0.83
 0.83

	0.8	3
NA	NA	
NA NA	NA NA	
NA .	NA	
		_
		_
		_
	_	-
		_
		_
N/A	N.A.	
NA NA	NA NA	
NA NA	NA NA	
NA NA	NA NA	
NA NA	NA NA	
NA NA	NA NA	
	NA .	_
	0.73	3
	0.73	
	0.73	
		-
		_
		_
		_
		_

	-
NA	NA
	NA
NA	NA
-	
NA	NA
-	

	•
0.86	
0.86	
0.86	0.86
	0.86
	0.86
0.86	0.86
0.83	
0.83	
0.83	
0.92	
0.92	
0.92	
NA	NA
0.82	
0.82	
0.82	
0.82	

NA	NA
NA	NA
NA NA	NA NA
NA NA	NA NA
NA NA	NA NA
NA.	NA .
0.86	
	0.86
0.86	
	0.86
0.91	
	0.91
0.92	

	0.92
	0.87
0.94	
	0.94
0.863666667	0.816842105
86	81

CALCUTTA INSTITUTE OF ENGINEERING AND MANAGEMENT DEPARTMENT OF INFORMATION TECHNOLOGY ACADEMIC YEAR 2019-2020 CO PO MAPPING FOR ODD SEMESTER,2019

PROGRAM OUTCOMES

PO-1: Engineering Knowledge:

Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO-2: Problem Analysis:

Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO-3: Design/development of solutions:

Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO-4: Conduct investigations of complex problems:

Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO-5: Modern tool usage:

Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.

PO-6: The engineer and society:

Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO-7: Environment and sustainability:

Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO-8: Ethics:

Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO-9: Individual and team work:

Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO-10: Communication:

Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

PO-11: Project management and finance:

Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO-12: Life-long learning:

Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

COURSE DETAILS

COURSE NAME	Physics I
COURSE CODE	BS PH-101
NAME OF THE PROGRAMME	B.Tech
DEPARTMENT	Information Technology
SEMESTER	1

CO-PO MAPPING

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	\checkmark											
CO2	$\sqrt{}$			$\sqrt{}$								
CO3	$\sqrt{}$	\checkmark	\checkmark	$\sqrt{}$								
CO4	$\sqrt{}$			$\sqrt{}$								
CO5				$\sqrt{}$					·			
CO6												

COURSE DETAILS

COURSE NAME	Mathematics I(A)
COURSE CODE	BS-M(101)
NAME OF THE PROGRAMME	B.Tech
DEPARTMENT	Information Technology
SEMESTER	1

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1												
CO2												
CO3												

COURSE NAME	Basic Electrical Engineering
COURSE CODE	ES-EE101
NAME OF THE PROGRAMME	B.Tech
DEPARTMENT	Information Technology
SEMESTER	1

CO-PO MAPPING

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	\checkmark	\checkmark										
CO2												
CO3	$\sqrt{}$						\checkmark					

COURSE DETAILS

COURSE NAME	Physics – I Laboratory
COURSE CODE	BS PH-191
NAME OF THE PROGRAMME	B.Tech
DEPARTMENT	Information Technology
SEMESTER	1

CO-PO MAPPING

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	$\sqrt{}$	$\sqrt{}$		V								
CO2	$\sqrt{}$	$\sqrt{}$		V								
CO3				V								
CO4				V								
CO5				V								

COURSE DETAILS

COURSE NAME	Basic Electrical Engineering Laboratory
COURSE CODE	ES-EE191
NAME OF THE PROGRAMME	B.Tech
DEPARTMENT	Information Technology
SEMESTER	1

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	V											

CO2	$\sqrt{}$		$\sqrt{}$				
CO3			\checkmark				

COURSE NAME	Workshop/Manufacturing Practices
COURSE CODE	ES - ME 192
NAME OF THE PROGRAMME	B.Tech
DEPARTMENT	Information Technology
SEMESTER	1

CO-PO MAPPING

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1												
CO2												
CO3												
CO4												

COURSE DETAILS

COURSE NAME	Analog & Digital Electronics
COURSE CODE	ESC301
NAME OF THE PROGRAMME	B.Tech
DEPARTMENT	Information Technology
SEMESTER	3

CO-PO MAPPING

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1			\checkmark									
CO2												
CO3												

COURSE NAME	Data Structure & Algorithm
COURSE CODE	PCC-CS301
NAME OF THE PROGRAMME	B.Tech
DEPARTMENT	Information Technology
SEMESTER	3

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1												
CO2		$\sqrt{}$										
CO3			\checkmark	$\sqrt{}$								
CO4		$\sqrt{}$		$\sqrt{}$								
CO5		$\sqrt{}$										

COURSE NAME	Computer Orgranization
COURSE CODE	PCC-CS302
NAME OF THE PROGRAMME	B.Tech
DEPARTMENT	Information Technology
SEMESTER	3

CO-PO MAPPING

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1												
CO2			\checkmark									
CO3		$\sqrt{}$		$\sqrt{}$								
CO4			$\sqrt{}$									

COURSE DETAILS

COURSE NAME	Mathematics – III (Differential Calculus)
COURSE CODE	BSC-301
NAME OF THE PROGRAMME	B.Tech
DEPARTMENT	Information Technology
SEMESTER	3

CO-PO MAPPING

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1		$\sqrt{}$										
CO2												
CO3												
CO4												
CO5					$\sqrt{}$							

COURSE NAME	Economics for Engineers (Humanities – II)
COURSE CODE	HSMC 301
NAME OF THE PROGRAMME	B.Tech
DEPARTMENT	Information Technology
SEMESTER	3

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1												
CO2												$\sqrt{}$
CO3							V					

COURSE DETAILS

COURSE NAME	Analog & Digital Electronics Laboratory
COURSE CODE	ESC391
NAME OF THE PROGRAMME	B.Tech
DEPARTMENT	Information Technology
SEMESTER	3

CO-PO MAPPING

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1												
CO2												
CO3												

COURSE DETAILS

COURSE NAME	Data Structures and Algorithms
COURSE CODE	PCC-CS391
NAME OF THE PROGRAMME	B.Tech
DEPARTMENT	Information Technology
SEMESTER	3

CO-PO MAPPING

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	\checkmark		\checkmark									
CO2												
CO3				$\sqrt{}$								$\sqrt{}$

COURSE NAME	Computer Organisation
COURSE CODE	PCC CS-392
NAME OF THE PROGRAMME	B.Tech
DEPARTMENT	Information Technology
SEMESTER	3

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1												
CO2												
CO3												
CO4			V		√							

COURSE DETAILS

COURSE NAME	IT Workshop (SciLab/MATLAB/Python/R)
COURSE CODE	PCC-CS393
NAME OF THE PROGRAMME	B.Tech
DEPARTMENT	Information Technology
SEMESTER	3

CO-PO MAPPING

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1												
CO2												
CO3					V							
CO4		$\sqrt{}$	$\sqrt{}$	V								

COURSE DETAILS

COURSE NAME	Economics for Engineers
COURSE CODE	HU 501
NAME OF THE PROGRAMME	B.Tech
DEPARTMENT	Information Technology
SEMESTER	5

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1														
CO2											V	$\sqrt{}$		
CO3														
	COURSE NAME					Design & Analysis of Algorithm								
	COU	RSE CO	DE		IT 501									
NAM	NAME OF THE PROGRAMME					B.Tech								
DEPARTMENT					Information Technology									
	SEMESTER					5								

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1				$\sqrt{}$								
CO2												
CO3												
CO4				V								
CO5		V	V									

COURSE NAME	Computer Arcghitecture
COURSE CODE	IT 502
NAME OF THE PROGRAMME	B.Tech
DEPARTMENT	Information Technology
SEMESTER	5

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1												
CO2												
CO3	V	V		V							V	

COURSE NAME	Operating System
COURSE CODE	IT 503
NAME OF THE PROGRAMME	B.Tech
DEPARTMENT	Information Technology
SEMESTER	5

CO-PO MAPPING

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	$\sqrt{}$	$\sqrt{}$										
CO2				V								
CO3												
CO4				V								
CO5				V								

COURSE NAME	Programing Practices using C++
COURSE CODE	IT504F
NAME OF THE PROGRAMME	B.Tech
DEPARTMENT	Information Technology
SEMESTER	5

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	\checkmark	\checkmark										
CO2	\checkmark	\checkmark										
CO3			V	V								
CO4			V	V								

COURSE NAME	Algorithm Lab
COURSE CODE	IT591
NAME OF THE PROGRAMME	B.Tech
DEPARTMENT	Information Technology
SEMESTER	5

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1			\checkmark	√								
CO2		\checkmark										
CO3												
CO4											V	
CO5												

COURSE DETAILS

COURSE NAME	Computer Architecture
COURSE CODE	IT592
NAME OF THE PROGRAMME	B.Tech
DEPARTMENT	Information Technology
SEMESTER	5

CO-PO MAPPING

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1		$\sqrt{}$			$\sqrt{}$							
CO2		V										

COURSE DETAILS

COURSE NAME	Operating System Lab
COURSE CODE	IT593
NAME OF THE PROGRAMME	B.Tech
DEPARTMENT	Information Technology
SEMESTER	5

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	$\sqrt{}$											
CO2												
CO3												
CO4	$\sqrt{}$											

COURSE NAME	Programming Practices Using C++
COURSE CODE	IT594F
NAME OF THE PROGRAMME	B.Tech
DEPARTMENT	Information Technology
SEMESTER	5

CO-PO MAPPING

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1												
CO2												
CO3												
CO4												

COURSE DETAILS

COURSE NAME	Internet Technology
COURSE CODE	IT701
NAME OF THE PROGRAMME	B.Tech
DEPARTMENT	Information Technology
SEMESTER	7

CO-PO MAPPING

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	\checkmark											
CO2												
CO3	\checkmark											
CO4	$\sqrt{}$											

COURSE NAME	Multimedia
COURSE CODE	IT702
NAME OF THE PROGRAMME	B.Tech
DEPARTMENT	Information Technology
SEMESTER	7

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1												
CO2				V	V							
CO3					V							
CO4					V						V	

COURSE DETAILS

COURSE NAME	E-Commerce
COURSE CODE	IT703A
NAME OF THE PROGRAMME	B.Tech
DEPARTMENT	Information Technology
SEMESTER	7

CO-PO MAPPING

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1												
CO2												
CO3												
CO4												

COURSE DETAILS

COURSE NAME	Cloud Computing
COURSE CODE	IT704B
NAME OF THE PROGRAMME	B.Tech
DEPARTMENT	Information Technology
SEMESTER	7

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1												
CO2	√											
CO3												
CO4												V

COURSE NAME	Advanced Data Communication & Coding
COURSE CODE	IT705E
NAME OF THE PROGRAMME	B.Tech
DEPARTMENT	Information Technology
SEMESTER	7

CO-PO MAPPING

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1		\checkmark										
CO2		$\sqrt{}$										
CO3		$\sqrt{}$										
CO4		$\sqrt{}$		V								

COURSE DETAILS

COURSE NAME	Group Discussion
COURSE CODE	HU781
NAME OF THE PROGRAMME	B.Tech
DEPARTMENT	Information Technology
SEMESTER	7

CO-PO MAPPING

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1									V	V		
CO2				V					V			
CO3				V						V		$\sqrt{}$
CO4												$\sqrt{}$

COURSE DETAILS

COURSE NAME	Internet Technology
COURSE CODE	IT 7 91
NAME OF THE PROGRAMME	B.Tech
DEPARTMENT	Information Technology
SEMESTER	7

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	\checkmark		$\sqrt{}$		$\sqrt{}$							
CO2			V		V							
CO3			√		V							
CO4			√		V							

COURSE NAME	Multimedia
COURSE CODE	IT792
NAME OF THE PROGRAMME	B.Tech
DEPARTMENT	Information Technology
SEMESTER	7

CO-PO MAPPING

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1		√	\checkmark		\checkmark							
CO2	\checkmark											
CO3												
CO4												
CO5												
CO6			$\sqrt{}$		$\sqrt{}$						$\sqrt{}$	

COURSE DETAILS

COURSE NAME	E-Commerce
COURSE CODE	IT793A
NAME OF THE PROGRAMME	B.Tech
DEPARTMENT	Information Technology
SEMESTER	7

CO-PO MAPPING

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1			V									
CO2			V								V	
CO3			V	V								
CO4	√	√	V	V				√		√		

COURSE DETAILS

COURSE NAME	Industrial Training
COURSE CODE	IT794
NAME OF THE PROGRAMME	B.Tech
DEPARTMENT	Information Technology
SEMESTER	7

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	V										V	$\sqrt{}$

CO2	$\sqrt{}$			~				$\sqrt{}$	
CO3		$\sqrt{}$							
CO4		V	V	V			V		

COURSE NAME	Project-1
COURSE CODE	IT795
NAME OF THE PROGRAMME	B.Tech
DEPARTMENT	Information Technology
SEMESTER	7

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1												
CO2												
CO3												
CO4				1								
CO5							$\sqrt{}$				$\sqrt{}$	
CO6										V	V	

Paper Name	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	CO1	0.81											
	CO2		0.72	0.72									
DC DII 101	CO3	0.75			0.75								
BS PH-101	CO4					0.83							
	CO5		0.69		0.69								
	CO6			0.79	0.79								
	CO1	0.75	0.75										
BS-M(101)	CO2	0.9		0.9									
	CO3	0.72	0.72										

	CO1	0.7	0.7			Ì				
ES-EE101	CO2	0.75								
	CO3	0.7					0.7			
	CO1			0.72	0.72					
	CO ₂			0.8	0.8					
BS PH-191	CO3			0.78	0.78					
	CO4		0.85	0.85	0.85					
	CO5		0.75	0.75						
	CO1	0.75								
ES-EE191	CO2		0.65	0.65						
	CO3		0.7	0.7			0.7			
	CO1			0.7						
	CO2	0.7		0.7						
ES - ME 192	CO3			0.65						
	CO4	0.7	0.7							
	CO1		0.69	0.69						
	CO2	0.72								
BS CH-201	CO3	0.78								
	CO4	0.81								
	CO5			0.82	0.82	0.82				
	CO1	0.9								
DC 3/401	CO2	0.75	0.75	0.75						
BS-M201	CO3					0.7				
	CO4								0.85	
	CO1		0.7	0.7						
EG . GG201	CO2	0.6	0.6	0.6						
ES-CS201	CO3	0.7	0.7	0.7	0.7	0.7				
	CO4		0.65		0.65					
	CO1	0.62							0.62	
****	CO2	0.58								
HM-HU201	CO3	0.75	0.75							
	CO4	0.64	0.64							
	CO1		0.72	0.72						
	CO2			0.78	0.78		0.78			
BS CH-291	CO3		0.83	0.83						
	CO4		0.76	0.76						
	CO5		0.84	0.84						
	CO1		0.9							
	CO2			0.9						
	CO3			0.8						
EC (CC204	CO4		0.85	0.85						
ES-CS291	CO5			0.9						
	CO6			0.8						
	CO7		0.75	0.75						
1										

ES-ME291 CO2		CO1	0.75	İ					ĺ				
ES-ME291 CO3					0.7								
CO4 0.65 0	ES-ME291												
HM-HU291 CO1				0.65									
HM-HU291 CO2													
HM-HU291 CO3											0.54		
ESC301	HM-HU291			0.77	0.77								
ESC301			0.67										
ESC301					0.6								
CO3	ESC301			0.62									
PCC-CS301 CO2 0.83 0.83 0.8 0.82 0.82 CO5 0.71 0.71 CO1 0.7 0.7 CO2 0.85 0.87 0.75 CO3 0.75 CO4 0.85 0.85 0.85 CO5 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.75 CO4 0.85 0.87 CO5 0.74 CO5 0.74 CO5 0.74 CO5 0.74 CO5 0.75 CO4 0.65 0.75 CO4 0.70 0.7 0.7 CO5 0.72 0.72 0.72 0.72 0.75 CO4 0.70 0.70 CO5 0.74 CO5 0.74 CO5 0.74 CO5 0.74 CO5 0.75 CO6 CO7 CO7 CO7 CO7 CO8 0.75 CO8 0.77 CO9 0.77 CO9 0.78 0.79 0.70 0.70 0.70 0.70 0.71 CO5 0.74 0.74 0.74 0.74 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.76 0.77 0.77 0.77 0.77 0.78 0.79 0.79 0.79 0.70 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.72 0.72 0.72 0.72 0.72 0.73 0.74 0.	25 55 72												
PCC-CS301		CO1	0.79	0.79									
CO4		CO2		0.83	0.83								
CO4	PCC-CS301	CO3			0.8	0.8							
PCC-CS302 CO1		CO4		0.82		0.82							
PCC-CS302		CO5		0.71	0.71								
PCC-CS302 CO3		CO1	0.7	0.7									
BSC-301	D G G G G G G G G G G G G G G G G G G G	CO2			0.75								
BSC-301 CO1	PCC-CS302	CO3		0.7		0.7							
BSC-301 CO2 CO3 CO4 CO5 CO4 CO5 CO5 CO5 CO5 CO5		CO4			0.65		0.65						
BSC-301		CO1	0.7	0.7									
CO4		CO2	0.72	0.72	0.72								
CO4	BSC-301	CO3			0.75	0.75							
HSMC 301		CO4			0.7	0.7							
HSMC 301		CO5		0.74			0.74						
CO3		CO1		0.58	0.58								
ESC391	HSMC 301	CO2		0.59								0.59	0.59
ESC391		CO3						0.61					
PCC-CS391		CO1			0.7								
PCC-CS391	ESC391	CO2			0.65	0.65							
PCC-CS391													
PCC CS-392 CO1			0.85				0.85						
PCC CS-392 CO1	PCC-CS391	CO2	0.8		0.8		0.8						
PCC CS-392 CO1	100 0001					0.82							0.82
PCC CS-392 CO2				0.8									
PCC CS-392 CO3					0.8								
PCC-CS393 CO4	PCC CS-392						0.8						
PCC-CS393													
PCC-CS393			0.83										
PCC-CS393 CO3				0.85	0.85					0.85			
CO4 0.74 0.74 0.74 0.74 CO1 0.75 CO1 0.75 CO1 0.75 CO1 0.74 CO1 0.75 CO1 0.74 CO1	PCC-CS393		0.82				0.82						
CO1 0.75				0.74		0.74							
	PCC-CS401			0.8									
CO3 0.75 0.75	100-00401												

	CO4	0.8	0.8						Î			
	CO5			0.75		0.75						
	CO1	0.75	0.75	0.75		0.75						
PCC-CS402	CO2	0.85	0.85	0.85		0.85						
	CO3	0.8	0.8	0.8	0.8	0.8					0.8	
	CO1	0.7										
	CO2		0.65	0.65								
PCC-CS403	CO3			0.75								
	CO4				0.65							0.65
	CO1	0.85	0.85									
	CO2		0.75	0.75								
	CO3		0.7	0.7								
P GG GG404	CO4		0.8	0.8								
PCC-CS404	CO5		0.85	0.85								
	CO6		0.7	0.7								
	CO7		0.7			0.7						
	CO8		0.65			0.65						
	CO1	0.82	0.82		0.82							
	CO2	0.81	0.81									
DCC 401	CO3		0.78		0.78							
BSC 401	CO4		0.83		0.83							
	CO5		0.75	0.75				0.75				
	CO6	0.79	0.79									
	CO1			0.8			0.8	0.8				
	CO2			0.82			0.82	0.82				
MC 401	CO3			0.84		0.84	0.84	0.84				
WIC 401	CO4			0.8	0.8			0.8				
	CO5		0.88	0.88				0.88	0.88	0.83	3	
	CO6						0.89	0.89	0.89	0.89	•	
PCC-CS 492	CO1		0.95	0.95		0.95						
PCC-CS 492	CO2		0.85	0.85								
	CO1			0.85	0.85							
	CO2		0.7								0.7	
PCC-CS494	CO3			0.7		0.7						
	CO4			0.75	0.75						0.75	
	CO5		0.6	0.6								
	CO1	0.85	0.85	0.85								
	CO2	0.8	0.8									
ESC-501	CO3			0.9		0.9						
	CO4	0.7										
	CO5			0.65	0.65	0.65					0.65	
	CO1	0.9	0.9	0.9								
PCC-CS501	CO2			0.85		0.85						
	CO3			0.8						0.3	8	

	CO4			0.75	0.75				-				
	CO1	0.6	0.6										
PCC-CS502	CO2		0.7	0.7	0.7								
	CO3	0.65		0.65									0.65
	CO4		0.6		0.6								
	CO1	0.7	0.7										
DOG GGEAA	CO2			0.8	0.8								
PCC-CS503	CO3		0.65	0.65	0.65								
	CO4			0.8		0.8							
	CO1	0.59	0.59					0.59					
HSMC 501	CO2		0.61	0.61									
	CO3		0.62								0.62		
	CO1	0.6				0.6	0.6						
	CO2			0.7	0.7						0.7		
PEC-IT501B	CO3							0.75					
	CO4		0.7					0.7					
	CO5			0.6	0.6						0.6		
	CO1	0.7		0.7								0.7	
	CO2	0.85	0.85										
PEC-IT501C	CO3	0.75	0.75										
	CO4		0.7	0.7	0.7								
	CO5		0.65	0.65		0.65							
MC-CS501	CO1								0.72	0.72	0.72		0.72
	CO1	0.85	0.85										
TGG 504	CO2	0.9		0.9		0.9							
ESC-591	CO3			0.6	0.6								
	CO4	0.75	0.75										
	CO1	0.6		0.6									
PCC-CS592	CO2	0.7		0.7									
	CO3	0.65		0.65									
	CO1	0.93				0.93							
PCC-CS593	CO2	0.92		0.92		0.92							
	CO3			0.95	0.95	0.95							0.95
	CO1	0.8	0.8			0.8							
	CO2		0.75	0.75	0.75								
DCC CS(01	CO3		0.7		0.7								
PCC-CS601	CO4		0.75	0.75									
	CO5	0.7		0.7									
	CO6		0.65				0.65						0.65
	CO1	0.7	0.7	0.7	0.7								
PCC-CS602	CO2		0.7	0.7	0.7								
	CO3		0.75		0.75	0.75							0.75
DEC ITCALD	CO1		0.7		0.7								
PEC-IT601D	CO2									0.72			

	CO3												0.8
	CO4		0.6					0.6					
	CO5		0.75					0.75					
	CO1							0.6					
	CO2		0.7		0.7								
PEC-IT602D	CO3	0.75				0.75	0.75					0.75	
	CO4	0.7				0.7	0.7						
	CO5				0.6								
	CO1				0.75								
	CO2				0.6								
	CO3	0.7				0.7	0.7					0.7	
OEC-IT601B	CO4	317				341	007		0.75			377	
	CO5		0.6						00.0				
	CO6		0.0	0.6	0.6								
	CO1		0.78	0.0	0.0								
	CO2		0170		0.82	0.82							
	CO3				0.02	0.02			0.67				
PROJ-CS601	CO4						0.79		0.07				
	CO5						0.75						
	CO6						0.70	0.85					
	CO1	0.8		0.8		0.8		0.02					
	CO2			0.75		0.75							
PCC-CS691	CO3			0.7		0.7							
100 050/1	CO4			0.75		0.75							
	CO5	0.7				0.7							0.7
	CO1		0.9										
	CO2	0.9	0.9										
PCC-CS692	CO3	0.5	0.5	0.9									
	CO4			0.8	0.8								
	CO1		0.85										
	CO2	0.75	0.75										
PEC-IT701C	CO3	0.65						0.65					
	CO4												0.7
	CO1	0.77	0.77	0.77									
	CO2			0.76	0.76	0.76							
PEC-IT702A	CO3					0.73							
	CO4			0.72		0.72						0.72	
	CO1					•	0.83						
	CO2									0.81			0.81
OEC-IT701C	CO3								0.74	0.74			
	CO4						0.68				0.68	0.72	
	CO1						0.58	0.58					
HSMC 701	CO2										0.59	0.59	0.59
1151/10 /01	CO3		0.6								3,27	0.6	0.6

	ı	74%	74%	75%	73%	78%	75%	73%	79%	79%	73%	73%	73%
Attainment		0.74	0.74	0.75	0.73	0.78	0.75	0.73	0.79	0.79	0.73	0.73	0.73
Average PO												3.33	
	CO6						0.85	0.85	0.85	0.02	0.02	0.85	0.85
	CO5								0.0	0.82	0.82	0.0	0.0
PROJ CS 881	CO4					0.01		0.01	0.8	0.01		0.8	0.8
	CO3					0.81		0.81		0.81			
	CO2					0.82				0.82		31.3	
	CO1			0.78	J., _	0.78						0.78	
	CO4			0.72	0.72	0.75							0.70
OEC-IT802A	CO3		0.05	0.05		0.75							0.75
	CO2		0.65	0.65		0.65							
	CO1		0.84		0.5								
	CO5				0.5								
OEC-1100IA	CO4				0.55								
OEC-IT801A	CO3		0.0		0.6			3.2			0.78		
	CO2		0.5					0.5					
	CO1			0.05	0.05			0.55					
	CO4		0.01	0.85	0.85								
PEC-IT801B	CO3		0.81	0.0									
	CO2		0.8	0.8									
	CO1		0.8							0.04	0.82	0.02	
	CO5							0.82		0.82	0.82	0.82	
				0.81	0.81			0.02				0.92	
PROJ-IT 781	CO3		0.8	0.8	0.01								
	CO2		0.78	0.0						0.78	0.78		
	CO1				0.77					0.77			